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ARTICLE INFO ABSTRACT

Article history: Background: This study aimed to evaluate the effectiveness of machine learning (ML)
Received 09 March 2025 models in predicting difficult intubation among maxillofacial surgery patients by using
Revised 30 March 2025 clinical data from a previous study involving 132 patients. The study sought to enhance
Accepted 14 April 2025 anesthesiologists' ability to identify patients at risk of difficult intubation, a critical concern

in surgical settings.

Keywords: Methods: The research applied various ML algorithms, including decision trees (DT),
Difficult intubation; random forests (RF), Naive Bayes (NB), neural networks (NN), support vector machines

(SVM), K-nearest neighbors (KNN), and ensemble voting methods, to the existing clinical
dataset. This dataset contained a range of factors potentially associated with DI, such as
the Mallampati score, Upper Lip Bite Test (ULBT) results, facial angle, and other relevant
variables. A comprehensive approach was taken to explore the impact of different data
preprocessing techniques, with a particular focus on feature selection and normalization
methods.

Results: The study found that the combination of mutual information-based feature
selection and robust scaler normalization consistently yielded high predictive accuracy.
Notably, the decision tree algorithm achieved an accuracy of 0.84 and precision,
sensitivity, and specificity scores of 0.95. The analysis also highlighted the strength of
ensemble learning, which, by combining multiple classifiers, achieved an accuracy of
0.82. The results suggest that ML models, especially random forests and ensemble voting
methods, can be highly accurate in predicting difficult intubation when trained on existing
clinical data.

Conclusion: The research underscores the importance of data preprocessing in enhancing
algorithmic performance, particularly the effectiveness of mutual information-based
feature selection combined with robust scaler normalization. However, the study also
indicates the need for further research to refine these models, ensuring their applicability
and reliability in real-world clinical settings.
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Introduction

nesthesiologists  recognize  the  critical
Aimportance of managing difficult airways in

clinical practice [1]. According to the American
Society of Anesthesiologists (ASA) Task Force,
difficulties with mask ventilation, laryngoscopy, or
tracheal intubation signify challenging airway
management, each with its specific criteria for difficulty
[2]. The ASA defines difficult tracheal intubation as a
situation that takes longer than 10 minutes or more than
three tries to place the tracheal tube correctly [3].
Proactive measures, including preoperative airway
exams, are essential in identifying patients with
problematic airways [4]. Despite their ability to forecast
many cases [5], these measurements may not always
predict difficulties, underscoring the need for continued
evaluation [6]. Difficult tracheal intubations can lead to
significant morbidity and mortality cases rate, ranging
from 1.5 to 13%. [7]. To address these challenges, several
airway devices and techniques, including fiberoptic
devices and laryngeal mask airways, have been
developed [8]. The Cormack and Lehane classification
method, which ranges from Class | (clear view) to Class
IV (limited view), helps categorize difficulties
encountered during laryngoscopy [9].
The classification system helps classify the challenges
encountered during laryngoscopy. Despite these
advancements, no universal test has proven effective in
predicting all cases of difficult intubation (DI) [9].
Commonly used assessment techniques include the
Lemon method, Upper Lip Bite Test (ULBT), Modified
Mallampati Score (MMS), neck movement, body mass
index (BMI), hyomental distance, thyromental distance
(TMD), palm print, head extension, and jaw protrusion
[7, 10]. Multiple tests are generally preferred over single
assessments due to their limited predictive accuracy [11].
Comprehensive airway evaluation involves both visible
and hidden anatomical components, such as the tongue
base and larynx [2]. Mallampati classes Il and IV, along
with reduced facial angle (<82.5°), have been identified
as significant predictors of difficult airway management
[8, 12-14]. Other parameters such as TMD, sternomental
distance (SMD), interincisor distance (11D), and reduced
atlanto-occipital have also been implicated in predicting
DI [15].
Artificial intelligence (Al) has increasingly been applied
to tasks such as disease detection, screening, and
treatment [16-17]. Al excels in managing large datasets
and enhancing prediction accuracy through methods like
feature extraction [18-20]. Ensemble approaches
combine predictions from multiple models to improve
overall accuracy and reduce generalization errors [19,
21]. The ensemble behaves and produces results as
though it were a single model, even though it consists of
several underlying models [20]. Notable methods in this
field include bagging, boosting, stacking, and voting
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[21]. Voting is one of the ensemble algorithms that is
utilized the most and increases accuracy and robustness
by combining predictions from separate models [22].
Recent studies have explored the application of Al in DI
prediction. Wang et al. developed a semi-supervised
deep-learning model for difficult airway assessment. The
model achieved an accuracy of 90.00% and an Area
Under Curve (AUC) of 0.94 [23]. Kim et al. developed a
predictive model for difficult laryngoscopy and identified
the Mallampati score, age, and sternomental distance as
predictive parameters; they achieved a predicted AUC of
0.71 and recall (sensitivity) of 0.85 [24]. Yamanaka et al.
developed ML models using demographic and initial
airway assessment data for predicting difficult airway
and first-pass success in the emergency department. They
were able to surpass conventional methods in terms of
discrimination ability [25].

Zhou et al. identified age, sex, weight, height, and BMI
as the top weighting factors for predicting difficult
airways. They achieved an AUC > 0.8, accuracy > 90%,
and precision of 100% using the gradient boosting
algorithm [26]. Tavolara et al. developed a deep-learning
model using facial images to identify difficult-to-intubate
patients; they achieved an AUC of 0.7105, leveraging the
robust features of multiple face regions for classification
[22].

Our study introduces a systematic approach for
predicting difficult intubation using a comprehensive
dataset from patients undergoing general anesthesia for
maxillofacial surgery in Iran. This local dataset is unique
as it includes a specific facial angle measurement. By
integrating multiple pre-operative assessments, such as
the ULBT, Modified Mallampati Test, and cephalometric
X-ray, with demographic and clinical data, our study
offers an overview of factors influencing DI prediction.
Additionally, this is the first time an ensemble model has
been applied to this type of data, as previous studies have
only utilized ensemble methods on facial images in this
era. Our study aims to compare the effectiveness of
ensemble learning techniques with varied machine
learning (ML) functions, aiming to enhance the accuracy
and robustness of the prediction. This approach addresses
the research gap in using diverse datasets and aims to
improve patient safety and understandings in airway
management.

Research questions

e How do various machine learning algorithms,
including ensemble models, differ in predicting
difficult intubation?

e What are the significant predictors of difficult
intubation identified by machine learning
models?
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Methods

Dataset and Preprocessing

A study by Mahmoodpoor et al. (2012-2013), approved
by the Ethics Committee of Tabriz University of Medical
Sciences, aimed to identify factors associated with DI in
patients undergoing maxillofacial surgeries under general
anesthesia [8]. The dataset includes features such as age,
facial angle, Cormack-Lehane grades, ULBT,
Mallampatic score, sex, BMI, and intubation outcomes,
among others. The intubation outcomes were classified
as either easy or difficult based on Cormack-Lehane
grades. It is necessary to mention that facial angle (FA)
in these patients was determined via cephalometry X-ray.

For null and missing data handling purposes, Python
packages NumPy and Pandas were used. In this process,
we identified missing or empty columns and assigned
numerical values to empty cells to represent features,
according to the team’s expert opinion. The final dataset
consisted of 19 columns representing features and targets
and 132 rows representing patients. Then, as mentioned
previously, the intubation result column, consisting of
two classes representing easy and difficult intubation,
was selected as the target variable.

Then, three normalization techniques were used for the
dataset: robust normalization, min-max, and standard
scaler. We decided to use three to be able to assess
multiple combinations of these three techniques for
feature selection techniques. MinMax_Scaler (MinMax)
rescales the data within a specified range, and
Standard_Scaler (STD) transforms the data to a mean and
standard deviation of 1. Robust_Scaler (Robust) is less
accurate in identifying outlier data but rescales the data
by eliminating the first quartile. After converting the
dataset to a numeric representation, the target was taken
out. The target column was then added to each scaled data
frame (df) after three scaler data frames were instantiated
and suited to the data using the corresponding
fit_transform methods. Subsequently, three distinct
feature selection methods were used to choose the top
five objects for the target variable. The ANOVA F-value
(Fscore), chi-square (Chi2), and mutual information
(Mutual info) were utilized to assess the significance of
each feature. Using each of these three feature selection
methods, we were motivated by earlier research on
feature selection strategies in medical data analysis. Sikri
et al. showed how feature ranking is affected by pre-
processing data, which is crucial to meeting the chi-
square method's assumptions [27]. Also, a mutual
information criterion-based feature selection technique
was presented by Sulaiman and Labadin, who
demonstrated how well it worked to enhance ML model
performance [28]. Furthermore, Hoque et al. presented a
greedy feature selection technique based on mutual
information theory that showed excellent classification
accuracy over a number of datasets [29]. These score

functions were used to generate three feature selection
objects, which were then fitted to imputed data, and the
SelectKBest class from the sklearn.feature selection
module was used to choose the top 5 features. In (Figure
1), a graphic illustration of the comprehensive method is
presented.

Afterwards, 6 ML algorithms of Decision Tree (DT), K
Nearest Neighbor (KNN), Naive Bayes (NB), Random
Forrest (RF), Support Vector Machine (SVM), and
Neural Network (NN) were used to classify the dataset.
Developing each of the models consisted of setting a
random seed, loading the dataset, extracting the target
column, converting features, separating data, determining
class weights, training the classifier model, assessing
performance with various metrics, and visualizing the
outcomes. All were steps involved in each technique. For
the target variable, three feature selection techniques
were applied, which were followed by three
normalization techniques. So finally, nine different
combinations of normalization and feature selection
techniques were used to assess each algorithm's best
performance for the target variables. Accuracy, precision,
recall, F1 score, and specificity were among the metrics.

Using the same feature selection and normalization
techniques, an ensemble learning algorithm was trained
for the target variable in addition to the previously
mentioned ML algorithms. Individual base classifiers,
such as DT and RF, were trained on the preprocessed
dataset using the ensemble learning method, ensuring
uniformity in feature selection and normalization across
the ensemble. These base classifiers' predictions were
then aggregated using a "soft" voting scheme, in which
the probabilities predicted by each base classifier are
averaged, or a "hard" voting strategy, in which a majority
vote decides the final prediction. The performance of the
ensemble classifiers was then estimated on unseen data
through the use of cross-validation techniques. We
computed the accuracy and F1 score and compared them
with the results from each classifier separately.
Confusion matrices are also produced to offer a thorough
examination of the performance of the ensemble model.
In Table 1, the algorithm, a combination of each feature
selection and normalization method, selected features for
each combination, and also performance metrics of each
combination are available.

Addressing Research Questions

In line with the overall objective of the study, we used
a variety of algorithms and ensemble learning techniques
to address RQ 1 regarding the performance of ML
algorithms. RQ 2, regarding the identification of
important factors associated with DI, was addressed by
feature selection techniques, which determined the most
significant features contributing to the prediction of DI.
Also, in (Figure 2), the schematic combination between
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normalization and feature selection methods that lead to
the final results is presented.

| 132 patients

Dataset Collection

Target Selection

| =5

Normalization
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MinMaxScaler | Chi-square

Feature Selection

| 19factors | Difficult Intubation (DI) | RobustScaler | ANOVAF-value
| Mutual information

Figure 1- Illustration of the comprehensive method

StandardScaler

MinMaxScaler

RobustScaler

Normalization

Chi-square

ANOVA F-value

Mutual Information

Feature Selection

Figure 2- Combination between normalization and feature selection methods

Results

As mentioned previously, (Table 1) presents the
performance of various ML algorithms in predicting
difficulty in intubation, emphasizing the impact of
different combinations of feature selection and
normalization techniques on predictive accuracy. Across
the algorithms tested, DT, RF, Naive Bayes, Neural
Network, Support Vector Machine, KNN, and an
ensemble method by voting were employed. These
algorithms were evaluated based on key metrics,
including accuracy, precision, sensitivity, and specificity.

Comparing the results, the mutual information feature
selection method, coupled with robust scaler
normalization, consistently produced high accuracy
across several algorithms. For instance, with DT, this
combination yielded an accuracy of 0.84, precision,
sensitivity, and specificity of 0.95. Similar trends were
observed for RF and KNN, achieving accuracies of 0.84
and 0.81 and the other three metrics of 1.0. Additionally,
SVM  demonstrated  competitive  performance,
particularly with mutual information feature selection
and MinMax normalization. With this combination, SVM
achieved an accuracy of 0.79, precision of 0.94,
sensitivity of 0.95, and specificity of 0.93. This indicates
that SVM, when optimized with appropriate feature
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selection and normalization techniques, can also provide
reliable prediction of intubation difficulty.

However, this was not always true among other
algorithms. With the mentioned combination, NB
exhibited relatively lower performance across different
algorithms. For instance, with Chi2 feature selection and
MinMax normalization, NB achieved an accuracy of
0.69. Similarly, with Mutual Information feature
selection and Robust normalization, NB attained an
accuracy of 0.81, precision of 0.83, sensitivity of 0.52,
and specificity of 0.89. These results suggest that NB
may not be as effective in accurately predicting
intubation difficulty as other algorithms tested.

Also, among the algorithms, NN showed its best
performance via another combination. At the same time,
mutual information was still the choice. The STD scalar
combination with it performed extremely well, with an
accuracy of 0.81, precision of 0.93, and sensitivity and
specificity of 0.82 and 0.96, respectively.

Furthermore, the ensemble method, which included the
best and most repeated combinations, namely, mutual
information and robust normalization, achieved an
accuracy of 0.82, precision of 0.94, sensitivity of 0.78,
and specificity of 0.98. This underscores the
effectiveness of ensemble learning in combining the
strengths of multiple classifiers to enhance predictive
performance.

In summary, considering the overall performance, the
mutual information feature selection method paired with
robust normalization emerges as the most effective
combination across multiple algorithms, particularly for
DT, RF, and KNN. However, for NB and NN, other
combinations, such as Chi2 feature selection with
MinMax normalization and mutual information feature
selection  with standard scalar  normalization,
respectively, displayed competitive performance.
Therefore, the choice of the best combination may
depend on the specific algorithm and dataset
characteristics.

(Table 2) demonstrates the P values associated with
each feature, which indicates their association with
binary classes. According to our binary target, each P
value is computed based on its association with Class 1,
representing easy intubation. The p-value associated with
angle input is 0.4, recommending no significant
association between this feature and class 1 and also
recommending that this feature is more likely to be
associated with class 2, DI. ‘facial_angle+ULBT' P value
is 0.03, showing a significant association between this
feature and class 1. The p-value associated with
‘facial_angle+mallempati' is 0.02, also suggesting the
association with class 1. Intubation_try and BMI P values
are 0.3 and 0.6, respectively, indicating that they are more
likely to be associated with class 2.

Table 1- Feature Selection, Normalization, and Performance Metrics for Intubation Difficulty Target

Feature
Selection

Algorithm

Normalization

Obtained Features from “Feature
Selection” and “Normalization”
combination

Accuracy

Precision

Sensitivity

Specificity

Decision  Chi2
Tree

Fscore

Mutual
info

Random Chi2
Forest

MinMax

STD

Robust

MinMax
STD
Robust

MinMax
STD
Robust

MinMax

STD

['mallempati’, ‘facial_angle’,
'facial_angle+ULBT',
‘facial_angle+mallempati’,
'sex]

['facial_angle',
'facial_angle+ULBT',
‘facial_angle+mallempati’,
'sex’, 'height']
['facial_angle',
‘facial_angle+mallempati+UL
BT', 'mallempati', 'sex’,
‘height’]

['facial_angle',
'facial_angle+ULBT',
‘facial_angle+mallempati’,
'sex’, ‘height']
['facial_angle',
‘facial_angle+ULBT',
‘facial_angle+mallempati’,
'intubation_try', '‘omi']
['mallempati’, ‘facial_angle’,
‘facial_angle+ULBT',
‘facial_angle+mallempati’,
'sex']

['facial_angle’,
‘facial_angle+ULBT',

0.65

0.71

0.73

0.71
0.71
0.71

0.84
0.84
0.84

0.68

0.75

0.71

0.82

0.86

0.82
0.82
0.82

0.95
0.95
0.95

0.72

0.86

0.65

0.82

0.86

0.82
0.82
0.82

0.95
0.95
0.95

0.60

0.78

0.67

0.79

0.84

0.79
0.79
0.79

0.95
0.95
0.95

0.70

0.87
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‘facial_angle+mallempati’,
'sex’, 'height’]
Robust ['facial_angle’, 0.74 0.94 0.86 0.96
‘facial_angle+mallempati+UL
BT, 'mallempati', 'sex’,

‘height’]
Fscore MinMax ['facial_angle’, 0.75 0.86 0.78 0.87
STD 'facial_angle+ULBT', 0.75 0.86 0.78 0.87
Robust ‘facial_angle+mallempati’, 0.75 0.86 0.78 0.87
'sex’, 'height’]
Mutual ~ MinMax ['facial_angle’, 0.84 1.0 1.0 1.0
info STD ‘facial_angle+ULBT', 0.84 1.0 1.0 1.0
Robust 'facial_angle+mallempati’, 0.84 1.0 1.0 1.0
‘intubation_try', 'bomi']
Naive Chi2 MinMax ['mallempati’, ‘facial_angle’, 0.69 0.75 0.39 0.82
Bayes 'facial_angle+ULBT',
‘facial_angle+mallempati’,
'sex’]
STD ['facial_angle', 0.78 0.79 0.39 0.88

‘facial_angle+ULBT',
‘facial_angle+mallempati’,
'sex’, 'height’]
Robust ['facial_angle', 0.74 0.80 0.34 0.90
‘facial_angle+mallempati+UL
BT', 'mallempati', 'sex’,

‘height’]
Fscore MinMax ['facial_angle', 0.78 0.79 0.39 0.88
STD 'facial_angle+ULBT', 0.78 0.79 0.39 0.88
Robust ‘facial_angle+mallempati’, 0.78 0.79 0.39 0.88
'sex’, 'height']
Mutual ~ MinMax ['facial_angle', 0.81 0.83 0.52 0.89
info STD 'facial_angle+ULBT', 0.81 0.83 0.52 0.89
Robust ‘facial_angle+mallempati’, 0.81 0.83 0.52 0.89
'intubation_try', '‘omi']
Neural Chi2 MinMax ['mallempati’, ‘facial_angle’, 0.78 0.78 0.10 1.0
Network ‘facial_angle+ULBT',
‘facial_angle+mallempati’,
'sex]
STD ['facial_angle’, 0.76 0.81 0.26 0.96

'facial_angle+ULBT',
‘facial_angle+mallempati’,
'sex’, 'height']
Robust ['facial_angle’, 0.79 0.88 0.43 1.0
‘facial_angle+mallempati+UL
BT', 'mallempati’, 'sex’,

‘height']
Fscore MinMax ['facial_angle’, 0.76 0.74 0.10 1.0
STD ‘facial_angle+ULBT', 0.76 0.81 0.26 0.96
Robust ‘facial_angle+mallempati’, 0.78 0.80 0.21 0.97
'sex’, 'height']
Mutual ~ MinMax ['facial_angle’, 0.80 0.91 0.73 0.95
info STD ‘facial_angle+ULBT', 0.81 0.93 0.82 0.96
Robust ‘facial_angle+mallempati’, 0.80 0.92 0.73 0.97
'intubation_try', '‘omi']
Support Chi2 MinMax ['mallempati’, ‘facial_angle’, 0.81 0.79 0.39 0.88
vector ‘facial_angle+ULBT',
Machine ‘facial_angle+mallempati’,

'sex']
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STD ['facial_angle’', 0.79 0.79 0.39 0.88
‘facial_angle+ULBT',
'facial_angle+mallempati’,
'sex’, 'height']
Robust ['facial_angle’, 0.68 0.74 0.60 0.73
‘facial_angle+mallempati+UL
BT', 'mallempati’, 'sex’,
‘height’]
Fscore MinMax ['facial_angle’, 0.82 0.80 0.26 0.95
STD 'facial_angle+ULBT', 0.79 0.79 0.39 0.88
Robust ‘facial_angle+mallempati’, 0.81 0.80 0.26 0.94
'sex’, 'height']
Mutual ~ MinMax ['facial_angle’, 0.79 0.94 0.95 0.93
info STD 'facial_angle+ULBT', 0.82 0.81 0.34 0.92
Robust ‘facial_angle+mallempati’, 0.82 0.83 0.34 0.95
‘intubation_try', 'bomi']
KNN Chi2 MinMax ['mallempati’, ‘facial_angle', 0.76 0.80 0.34 0.90
‘facial_angle+ULBT',
‘facial_angle+mallempati’,
'sex’]
STD ['facial_angle', 0.79 0.79 0.13 0.99
‘facial_angle+ULBT',
‘facial_angle+mallempati’,
'sex’, 'height']
Robust ['facial_angle', ‘facial 0.82 0.75 0.10 0.98
angle+mallempati+ULBT',
‘'mallempati’, 'sex’, 'height']
Fscore MinMax ['facial_angle’, 0.81 0.79 0.13 0.99
STD 'facial_angle+ULBT', 0.79 0.79 0.13 0.99
Robust ‘facial_angle+mallempati’, 0.81 0.79 0.13 0.99
'sex’, 'height']
Mutual ~ MinMax ['facial_angle’, 0.74 0.89 0.65 0.95
info STD ‘facial_angle+ULBT', 0.77 0.89 0.89 0.97
Robust ‘facial_angle+mallempati’, 0.81 1.0 1.0 1.0
‘intubation_try', '‘omi']
Ensemble Mutual  Robust ['facial_angle’, 0.82 0.94 0.78 0.98
of info ‘facial_angle+ULBT', 'facial
angle+mallempati’,
‘intubation_try', '‘omi']
Table 2- Feature association with binary classes
Feature  ‘facial angle' 'facial_angle+ULBT"' 'facial_angle+mallempati' ‘intubation_try* ‘bmi*
P value 0.4 0.03 0.02 0.3 0.6
high accuracy across several algorithms. Several studies
Discussion have shown that the beneficial utility of various feature

Our study aimed to develop ML and ensemble learning
models based on optimized combinations of feature
selection and normalization methods for predicting DI.
We used the data of 132 patients who underwent elective
maxillofacial ~surgeries under general anesthesia,
including cephalometry, some tests, and demographic
data.

Our study's results demonstrate that among various ML
algorithms for predicting difficulty in intubation, the
mutual information feature selection method, coupled
with robust scaler normalization, consistently produced

selection or normalization algorithms, or even a
combination of them, is not totally forgotten, even though
it may not have been totally reported in our area of
interest. As for audiogram analysis, utilizing the various
methods or a combination of them resulted in an accuracy
of 0.93 in the KNN algorithm [30]. Also, for the aim of
enhancing Internet of Things (IOT) botnet attack
detection with ML methods, it was shown that using
mutual information in combination with other
preprocessing necessities, such as normalization,
represents accuracy scores that exceed the baseline often
[31].
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In terms of ML model performance, our study revealed
that the RF model emerged as the top performer,
exhibiting an accuracy of 0.84 along with flawless
precision, sensitivity, and specificity scores of 1.0 each.
Balanced RF, which in ‘Balanced’ refers to addressing
imbalanced class distribution, had also shown the second
highest performance in the prediction of difficult
laryngoscopy, with the mean AUC ranging from 0.90 to
0.98 [24] and an accuracy of 0.93 along with a precision
of 0.85, sensitivity of 0.73, and specificity of 0.99 in the
prediction of preclinical airway management [31].

Following closely behind was the ensemble of five ML
models, excluding NN, with an accuracy of 0.82. Despite
a slightly lower accuracy compared to RF, this ensemble
showcased remarkable precision and specificity. The
utilization of ensemble methods has been under
investigation recently. In our area of interest, the use of a
light gradient boosting machine, which is an ensembled
algorithm that sequentially adds the weak gradient
boosting to make a stronger prediction of difficult
laryngoscopy with an AUC of 0.71 and sensitivity of 0.85
[24]. An ensemble model of ML models also showed a
maximum c-statistic of 0.74, with a sensitivity of 0.67
and a specificity of 0.70 among other basic ML models.
Predicting difficult airway [25] and an ensemble of
convolutional neural networks through majority voting
resulted in an AUC of 0.7105 for the prediction of DI
[32]. The NN model demonstrated its strength with an
accuracy of 0.81, contributing significantly to the
ensemble’s diversity and resilience. DTs also proved their
worth with an accuracy of 0.81 and balanced
performance across other metrics, aligning with the
ensemble's collective strength. Neural networks have
been used in the past few years in the era of airway
management, mostly being developed for photographic
images with an accuracy of 0.90 [23], for chest X-rays in
endotracheal tube (ETT) placement checking with an
accuracy of 0.89 [33], and even on numerical datasets for
the prediction of DI in thyroid surgery, with an accuracy
of 0.90 [26].

KNN, SVM, and NB followed suit. Notably, SVM
showcased exceptional specificity, while NB exhibited
high precision. However, the SVM model slightly lagged
in terms of accuracy compared to other models.

Among the top 5 features related to DI, the Upper Lip
Bite Test and Mallampati test score are the most
commonly detected and discussed factors, which are the
assessment of mouth opening by instructing the patient to
bite their upper lip with their lower incisors [34] and the
classification grade of visibility of oral and
oropharyngeal structures during a maximal mouth
opening and tongue protrusion, respectively [35]. As
shown in several studies that were undertaken to validate
these two factors as predictors for DI, the accuracy of
ULBT as a predictor was reported to be up to 0.81%, and
for Mallampati, up to 0.66% [36]. Also, these two factors
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have undergone sensitivity and specificity tests for
approval of their prediction roles in DI. The ULBT
yielded sensitivity values of 77%, 95.4%, and 75% and
specificity scores of 93%, 50.8%, and 54% in three
different trials [37-39]. Similarly, two of these studies
indicated that the Mallampati test had a sensitivity of
66% and a specificity of 95.5%, with 96% and 54.8%,
respectively [37-38]. Also, it should be noted that the
combination of these two tests was reported sometimes
less consistent than one individual and sometimes more
effective than one [36].

Furthermore, in Al-interfered studies, Mallampati was
also reported as one of the top five predictors of DI
alongside the BMI [24, 26]. The facial angle is one
important component that also needs to be investigated.
Nonetheless, the absence of research focusing on this
particular component suggests the necessity of
conducting a thorough investigation in this field.
Currently, the study behind the collection of the present
study’s dataset serves as the main source of reference [8].
Notably, with a sensitivity of 87.5%, this study
demonstrates the importance of the face angle in
predicting DI [8]. This discovery highlights the face
angle's potential significance as a prognostic marker for
DI situations and clarifies its applicability in clinical
practice. However, more investigation through other
research is necessary to confirm and expand on these
results, improving our comprehension of the part that
facial anatomy plays in intubation challenges.

Conclusion

To summarize, our research investigated many ML
systems that utilize distinct feature selection and
normalization techniques to forecast intubation difficulty.
With accuracies ranging from 0.81 to 0.84, mutual
information feature selection combined with robust scaler
normalization proved to be consistently effective,
especially when used with DTs, RFs, and K Nearest
Neighbors. Certain algorithms performed better than
others, although some had very high specificity. Notably,
the ensemble robustness and diversity were much
enhanced using the neural network model.

Furthermore, we emphasized the significance of
particular characteristics, such as the Mallampati score
and the Upper Lip Bite Test, in predicting challenging
intubations, with studies reporting verified sensitivity and
specificity ratings. Furthermore, our analysis highlighted
the possible importance of the facial angle, which our
dataset's 87.5% sensitivity verified. Limitations include a
short dataset size and the requirement for more
validation, notwithstanding our findings. However, our
work establishes a baseline for further investigation,
demonstrating the potential of ML to enhance clinical
judgment in airway control.
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