

Archives of Anesthesiology and Critical Care (In Press); x(x): xx-xx.

Available online at http://aacc.tums.ac.ir

Suppressing Postoperative Inflammation with Intravenous Ketamine as an Adjunct in Epidural Hysterectomy: A Clinical Study of C-Reactive Protein and Neutrophil—Lymphocyte Ratio

Rafly Suwandhi Wahid^{1*}, Muh. Ramli Ahmad^{1,2}, Haizah Nurdin^{1,2,3}, A. Husni Tanra¹, Andi Muhammad Takdir Musba^{1,2,3}, Charles Wijaya Tan^{1,4}

ARTICLE INFO

Article history:

Received 27 May 2025 Revised 17 June 2025 Accepted 01 July 2025

Keywords:

Hysterectomy; Ketamine; C-reactive protein; Inflammation; Epidural anesthesia; Pain management

ABSTRACT

Background: Hysterectomy often triggers a systemic inflammatory response, increasing biomarkers like C-reactive protein (CRP) and the neutrophil-lymphocyte ratio (NLR), which can delay recovery and raise complication risks. Ketamine, a common anesthetic, possesses anti-inflammatory properties that may modulate this postoperative response. This study aimed to further examine the effects of ketamine on CRP and NLR levels in patients undergoing hysterectomy.

Methods: This double-blind randomized clinical trial included 28 adult female patients (ASA I–II) undergoing elective abdominal hysterectomy under epidural anesthesia. Patients were randomized to receive either 0.5 mg/kg intravenous ketamine (intervention group) or no ketamine (control group). Serum CRP and NLR were measured preoperatively and at 8 and 24 hours postoperatively. The visual analog scale was used to evaluate pain level, data were processed with the appropriate statistical test, and a p-value < 0.05 is considered significant.

Results: Our study discovers that intravenous ketamine reduced postoperative inflammatory markers significantly. Postoperative measurements at 8 and 24 ours proved that the ketamine group had lower CRP and NLR levels significantly (p<0.05). Patients receiving ketamine showed a non-significant reduction in VAS pain scores compared with controls. No participant in either group needed additional opioids for pain control.

Conclusion: Intravenous ketamine decreased postoperative inflammatory response significantly in hysterectomy patients receiving epidural anesthesia, as proved by lower CRP and NLR. Ketamine seemed to improve patient comfort by lowering pain intensity. Combining epidural anesthesia with ketamine may be a viable strategy to suppress inflammation and enhance recovery after hysterectomy.

The authors declare no conflicts of interest.

E-mail address: raflysuwandhi@gmail.com

Copyright © 2025 Tehran University of Medical Sciences. Published by Tehran University of Medical Sciences.

¹Department of Anesthesiology and Intensive Care, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia.

²Dr. Wahidin Sudirohusodo Hospital, Makassar, Indonesia.

³Hasanuddin University Hospital, Makassar, Indonesia.

⁴Siloam Hospital, Makassar, Indonesia.

^{*}Corresponding author.

Introduction

ysterectomy ranks among the most frequently conducted surgical procedures in women and is -typically recommended for conditions like uterine fibroids, uterine cancer, uterine prolapse, and uterine atony that do not respond to other forms of treatment [1-3]. In certain cases, an abdominal approach is preferred because it allows comprehensive evaluation of the pelvic organs and lymphatic nodes [4]. In addition to being a curative procedure, hysterectomy can also play a preventive role in reducing the risk of ovarian and breast cancer in high-risk patients [5]. The complexity of patient conditions makes postoperative management, including inflammation control, particularly important.

Ketamine is a nonbarbiturate cyclohexanone-derivative general anesthetic widely used, particularly for procedures that do not require skeletal muscle relaxation [6-8]. Ketamine has a mechanism of action that inhibits N-methyl-D-aspartate (NMDA) receptors and the NLRP3 inflammasome, both of which play roles in the inflammatory response [9]. Accordingly, ketamine serves not only as an anesthetic but also has potential antiinflammatory effects. Post-hysterectomy inflammation responses are influenced by tissue trauma and tumorrelated mechanisms as well [10]. A key marker of acute inflammation is C-reactive protein (CRP), which reflects activation of proinflammatory cytokines and rises after tissue trauma [11]. CRP production is triggered by recognition of molecules from damaged tissue (damageassociated molecular patterns, DAMPs) and pathogens (pathogen-associated molecular patterns, PAMPs) by pattern recognition receptors such as toll-like receptors and NOD-like receptors [12].

Therefore, CRP is an important parameter in evaluating the effectiveness of postoperative anti-inflammatory interventions. Besides CRP, the neutrophil-lymphocyte ratio (NLR) serves as a significant marker of inflammation [13-14]. An increased NLR suggests an acute inflammatory response, which increases neutrophil levels and decreases lymphocyte counts induced by surgical trauma and blood loss. The decrease in lymphocytes impairs immune function, therefore increasing the risk of sepsis and multiple organ failure. Combined measurement of NLR and CRP provides comprehensive picture of a patient's postoperative inflammatory status. Recent studies have suggested that the low dose ketamine (0.5 mg/kg) administered before induction of anesthesia can significantly reduce the levels of IL-6 and CRP comparing with controls. These findings suggest that ketamine may be used as a perioperative antiinflammatory medication, particularly for major surgeries like hysterectomy. Therefore, the aim of this study was to analyze how ketamine use affected the postoperative CRP and NLR levels in individuals who undergoing hysterectomy.

Methods

Study Design

This experimental study employed a randomized controlled trial design at the surgical unit of Dr. Wahidin Sudirohusodo General Hospital, Makassar. The study was conducted from November 2024 until the required sample size was reached. This study has received ethical approval from the Health Research Ethics Committee of the Faculty of Medicine, Hasanuddin University, with number 761/UN4.6.4.5.31/PP36/2024 and Wahidin Sudirohusodo Hospital Ethics with number DP.04.03/D.XIX.2.3.1/373/2024. All subjects provided informed consent prior to participation.

Participants

The study population consisted of patients scheduled for elective abdominal hysterectomy under epidural anesthesia. Patients were selected using purposive sampling based on the following inclusion criteria: adult females (≥18 years) with American Society of Anesthesiologists physical status (ASA PS) I–II who consented to participate in the entire study protocol. Patients who did not meet these criteria or who experienced severe intraoperative complications were excluded from the study.

Study procedures

Subjects were then randomized into two groups: a control group, which did not receive ketamine, and an intervention group, which received ketamine at a dose of 0.5 mg/kg intravenously during the induction of anesthesia. Serum CRP levels, the neutrophil-to-lymphocyte ratio (NLR), and the Visual Analog Scale (VAS) for measuring pain severity were among the data gathered. All variables were assessed before surgery, following 8 and 24 hours after surgery.

Statistical Analysis

Statistical analysis was conducted with SPSS version 26.0 (IBM Corp., Armonk, NY, USA). Both parametric and non-parametric tests were employed, depending on the data distribution, to compare CRP and NLR levels between the two groups at each time point, with a significance level set at 5% (p < 0.05).

Results

The ketamine and control groups were comparable in baseline characteristics (Table 1). Baseline characteristics such as age, body mass index, ASA PS status, and type of surgical procedure were not significantly different between groups (all p>0.05),

indicating that both groups had comparable initial conditions (Table 1). No significant preoperative difference in NLR was found between the ketamine and control groups. However, at both 8 and 24 hours following surgery, patients receiving ketamine showed a significantly lower NLR than those in the control group (p < 0.05, Table 2). This implies that ketamine may reduce postoperative inflammation through inhibition of pro-inflammatory cytokines and modulation of the innate immune response. The pattern for serum CRP levels was similar. Although initial CRP levels were comparable between groups, CRP was significantly lower in the ketamine group than in the control group at both 8 and 24 hours postoperatively (Table 3). The most pronounced decrease occurred during the first 8 hours after surgery. These findings indicate a substantial early antiinflammatory effect of ketamine and are consistent with previous studies demonstrating that ketamine can significantly reduce postoperative CRP levels in cardiac surgical patients. The increase in CRP levels between 0 to 8 hours in the ketamine group was significantly lower than that in the control group (Table 4). However, the increase in CRP levels between 8 to 24 hours showed no significant difference between the two groups. This indicates that ketamine administration can suppress the inflammatory response in the early phase after the intervention. Pain scores, as measured by VAS, decreased over time in both groups (Table 5). However, there was no statistically significant difference in VAS scores between the ketamine and control groups at any time point (p > 0.05), although the ketamine group tended to report slightly lower pain scores.

Table 1- Characteristics of participants

Characteristics		Control Mean± SD	Ketamine Mean± SD	P value
Age ^(a) (years)		45.14± 6.59	49.50± 5.98	0.078 ns
BMI^a		23.34 ± 4.10	25.07 ± 5.01	0.325 ns
$ASA PS^{(d)}(\%)$	I	3 (21.4)	1 (7.1)	0.596^{ns}
	II	11 (78.6)	13 (92.9)	
Action ^(c) (%)	TAH/BSO	10 (71.4)	5 (35.7)	0.058 ns
	TAH	4 (28.6)	9 (64.3)	

Note: and ependent Sample t-test, chi-Square test, disher-Exact test, ns: not significant, set significant, ASA PS: American Society of Anesthesiologists physical status, TAH/BSO: total abdominal hysterectomy with bilateral salpingo-oophorectomy, BMI: body mass index, TAH: total abdominal hysterectomy.

Table 2- Comparison of NLR Levels between Groups

Measurement Time	Control Mean± SD	Ketamine Mean± SD	P value
NLR 0h ^b	3.14 ± 2.10	2.81 ± 2.77	0.182 ns
NLR 8 hours ^b	12.95 ± 7.96	7.03 ± 3.38	0.044^{*}
24-hour NLR ^b	11.14+ 7.79	5.69 + 3.14	0.021^{*}

Note: aIndependent Sample t-test, Mann-Whitney U test, ns: not significant, *: significant, NLR: neutrophil-to-lymphocyte ratio.

Table 3- Comparison of CRP Levels between Groups

Measurement Time	Control Mean± SD	Ketamine Mean± SD	P value
CRP 0h ^b	4.21 ± 3.49	3.19± 1.99	0.872 ^{ns}
CRP 8 hours ^b	29.08 ± 17.38	10.64 ± 8.44	0.005^{*}
24-hour CRP ^b	81.09 ± 31.76	54.42± 17.90	0.027^*

Note: aIndependent Sample t-test, Mann-Whitney U test, ns: not significant, *: significant, CRP: C-reactive protein.

Table 4- Comparison of Difference (Delta) of CRP Levels between Groups

Measurement Time	Control Mean± SD	Ketamine Mean± SD	P value
$\Delta CRP_{(T1-T0)}^{b}$	24.86± 16.19	7.45 ± 8.66	0.007^{*}
$\Delta CRP_{(T2-T1)}^{a}$	52.02 ± 26.30	41.78 ± 14.63	0.214 ns

Note: aIndependent Sample t-test, Mann-Whitney U test, ns: not significant, *: significant, CRP: C-reactive protein.

Table 5- Comparison of VAS between Groups

Measurement Time	Control Mean± SD	Ketamine Mean± SD	P value
VAS 2 hours ^b	3.00 ± 0.00	3.00 ± 0.00	1.000 ^{ns}
VAS 4 hours ^b	3.00 ± 0.00	3.00 ± 0.00	1.000 ^{ns}
VAS 6 hours ^b	2.71 ± 0.47	2.43 ± 0.51	0.210 ^{ns}
8-hour VAS ^b	2.43 ± 0.51	2.07 ± 0.27	0.114 ns
12-hour VAS ^b	2.07 ± 0.62	1.93 ± 0.27	0.423ns
24-hour VAS ^b	1.79 ± 0.43	1.71 ± 0.47	0.668^{ns}

Note: aIndependent Sample t-test, Mann-Whitney U test, ns: not significant, *: significant, VAS: Visual Analog Scale.

Discussion

This study demonstrated that the addition of low-dose intravenous ketamine to epidural anesthesia significantly attenuated the postoperative inflammatory response in patients undergoing hysterectomy. Compared with the control group, the ketamine group showed the decreased of NLR and CRP levels significantly at both 8 and 24 hours after surgery. This findings support the hypothesis that ketamine acts as an anti-inflammatory agent during the perioperative period, through NMDA receptor and NLRP3 inflammasome inhibition, leading to reduced cytokine production and innate immune activation.

Our results are in line with previous research. Singh et al. found that preoperative low-dose ketamine significantly lowered postoperative IL-6 and CRP levels in patients undergoing off-pump coronary artery bypass grafting [17]. Likewise, Bartoc et al. reported that ketamine reduced markers of inflammation in cardiac surgery patients [18]. These studies, together with our findings, suggest that ketamine's anti-inflammatory effects are not limited to cardiac surgery but may extend to major non-cardiac procedures such as hysterectomy.

Although ketamine is known to have analgesic effects [19], our study did not find a statistically significant difference in pain scores between groups. Pain scores decreased in both groups over time and no patients required further rescue doses of opioids, indicating that multimodal analgesia worked. The analgesic action of ketamine by NMDA receptor blockade may still be involved in the opioid-sparing effect. The lack of significant differences in pain score maybe due to the small sample size and dose used which should be investigated by prospective studies.

There are some limitations to this study such as a limited 24-h postoperative observation period and also other detailed inflammatory markers, like interleukins were unavailable which might have been helpful in understanding the effect of ketamine. Future studies with longer follow-up duration, more cases and and more various biomarkers to validate these findings.

Conclusion

The combination between epidural anesthesia with intravenous ketamine in hysterectomy patients led to significant reductions in postoperative inflammatory markers (CRP and NLR). Although pain intensity was reduced in the ketamine group, the difference was not statistically significant. These findings suggest that combining epidural anesthesia with low-dose ketamine may effectively reduce inflammation and promote postoperative recovery. Future research should focus on determining the effective ketamine dosage and evaluate additional biomarkers.

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

- [1] Pillarisetty LS, Mahdy H. Vaginal Hysterectomy. StatPearls, Treasure Island (FL): StatPearls Publishing; 2025.
- [2] Chen CJ, Thompson H. Uterine Prolapse(Archived). StatPearls, Treasure Island (FL): StatPearls Publishing; 2025.
- [3] Gill P, Patel A, Van Hook JW. Uterine Atony. StatPearls, Treasure Island (FL): StatPearls Publishing; 2025.
- [4] Ramirez PT, Frumovitz M, Pareja R, Lopez A, Vieira M, Ribeiro R, et al. Minimally Invasive versus Abdominal Radical Hysterectomy for Cervical Cancer. N Engl J Med 2018;379:1895–904.
- [5] Polen-De C, Bakkum-Gamez J, Langstraat C. Route of Hysterectomy for Benign Disease: Abdominal Hysterectomy. J Gynecol Surg 2021;37:116–21.
- [6] Rosenbaum SB, Gupta V, Patel P, Palacios JL. Ketamine. StatPearls, Treasure Island (FL): StatPearls Publishing; 2025.
- [7] Zanos P, Moaddel R, Morris PJ, Riggs LM, Highland JN, Georgiou P, et al. Ketamine and Ketamine Metabolite Pharmacology: Insights into Therapeutic Mechanisms. Pharmacol Rev 2018;70:621–60.
- [8] Karnina R, Rahmadani S, Faruk M. Incidence of Hypotension, Bradycardia, and Post-operative Nausea and Vomiting with Spinal Anesthesia in Cesarean Section Patient. Open Access Maced J Med Sci 2022;10:1602–6.
- [9] Li J-M, Liu L-L, Su W-J, Wang B, Zhang T, Zhang Y, et al. Ketamine may exert antidepressant effects via suppressing NLRP3 inflammasome to upregulate AMPA receptors. Neuropharmacology 2019;146:149–53.
- [10] AlAshqar A, Reschke L, Kirschen GW, Borahay MA. Role of inflammation in benign gynecologic disorders: from pathogenesis to novel therapies†. Biol Reprod 2021;105:7–31.
- [11] Peng J, Dong R, Jiao J, Liu M, Zhang X, Bu H, et al. Enhanced Recovery After Surgery Impact on the Systemic Inflammatory Response of Patients Following Gynecological Oncology Surgery: A Prospective Randomized Study. Cancer Manag Res 2021;13:4383–92.
- [12] Fang Y, Zheng T, Zhang C. Prognostic Role of the C-Reactive Protein/Albumin Ratio in Patients With Gynecological Cancers: A Meta-Analysis. Front Oncol 2021;11:737155.
- [13] Kurnia NF, Punagi AQ. The Relationship between Neutrophil on Lymphocyte Ratio with Clinical Stage

- of Nasopharyngeal Carcinoma Patients. Nusant Med Sci J 2022:50–60.
- [14] Rahman Abd, Indra I, Ferianto D, Nelwan BJ, Ardiansyah BD, Alvina Y, et al. Relationship of Tumor-Associated Neutrophil Expression and Neutrophil-to-Lymphocyte Ratio with Clinical Response to Neoadjuvant Chemotherapy in Locally Advanced Breast Cancer. Asian Pac J Cancer Biol 2025;10:13–9.
- [15] Zou P, Yang E, Li Z. Neutrophil-to-lymphocyte ratio is an independent predictor for survival outcomes in cervical cancer: a systematic review and meta-analysis. Sci Rep 2020;10:21917.
- [16] Jonska-Gmyrek J, Gmyrek L, Zolciak-Siwinska A, Kowalska M, Fuksiewicz M, Kotowicz B. Pretreatment neutrophil to lymphocyte and platelet to lymphocyte ratios as predictive factors for the

- survival of cervical adenocarcinoma patients. Cancer Manag Res 2018;10:6029–38.
- [17] Singh D, Kashav R, Magoon R, Kohli JK, Kaur M, Gupta A, et al. Evaluation of Low-Dose Ketamine on Inflammatory Biomarker Profile Following Off-Pump Coronary Artery Bypass Grafting. J Card Crit Care TSS 2020;04:33–9.
- [18] Bartoc C, Frumento RJ, Jalbout M, Bennett-Guerrero E, Du E, Nishanian E. A randomized, double-blind, placebo-controlled study assessing the anti-inflammatory effects of ketamine in cardiac surgical patients. J Cardiothorac Vasc Anesth 2006;20:217–22.
- [19] Jonkman K, Dahan A, van de Donk T, Aarts L, Niesters M, van Velzen M. Ketamine for pain. F1000Research 2017;6:F1000 Faculty Rev-1711.