Case Report

Medical Nutrition Therapy in Critically Ill Patients with Metabolic Encephalopathy, Diabetes Mellitus, Cerebral Infarction, and Status Epilepticus Complicated by Severe Protein-Energy Malnutrition: Case Report

Abstract

Glucose homeostasis disturbance is a common complication among patients in intensive care units (ICUs), frequently resulting in stress-induced dysglycemia. Individuals with diabetes mellitus (DM) are particularly susceptible to hyperglycemia and face a higher risk of severe hypoglycemia due to overtreatment. Particularly for patients on insulin or glucose-lowering drugs, it is crucial to maintain regular meal patterns in terms of timing, food type, and quantity. The 63-year-old female patient in this case study was referred from the neurology department after experiencing diminished awareness and going two days without eating. She had experienced multiple seizures lasting more than five minutes and presented with a nasogastric tube (NGT) insertion showing 150 mL of greenish gastric residual. The patient reported reduced intake over the past week due to nausea and headaches, occasional vomiting, intermittent fever, and a weight loss of 2.2 kg (4.8%) within one week. Medical nutrition therapy (MNT) was initiated to ensure adequate nutrient intake through enteral and parenteral routes, followed by a gradual transition to oral feeding. This approach aimed to improve the patient’s nutritional and metabolic status through personalized and adequate nutritional care. The patient's clinical condition was managed concurrently, with continuous monitoring of intake, anthropometry, and laboratory parameters to evaluate the intervention’s effectiveness. This case highlights that proper medical nutrition therapy for critically ill patients with metabolic encephalopathy, diabetes mellitus, cerebral infarction, and status epilepticus complicated by severe protein-energy malnutrition can lead to significant improvements in clinical outcomes.

[1] Silva-Perez LJ, Benitez-Lopez MA, Varon J, Surani S. Management of critically ill patients with diabetes. World J Diabetes. 2017;8(3):89-96.
[2] International Diabetes Federation. Diabetes. IDF; 2017.
[3] Soelistijo SA, Lindarto D, Decroli E, et al. Pedoman Pengelolaan dan Pencegahan Diabetes Melitus Tipe 2 Dewasa di Indonesia. PB Perkeni; 2021.
[4] American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2014;37 Suppl 1:S81-90.
[5] American Diabetes Association. Diagnosis and Classification of Diabetes Mellitus. Diabetes Care. Published online 2016:62-69.
[6] Leij-Halfwerk S, Verwijs MH, van Houdt S, Borkent JW, Guaitoli PR, Pelgrim T, et al. Prevalence of protein-energy malnutrition risk in European older adults in community, residential and hospital settings, according to 22 malnutrition screening tools validated for use in adults ≥65 years: a systematic review and meta-analysis. Maturitas. 2019;126:80-9.
[7] Hand RK, Murphy WJ, Field LB, Lee JA, Parrott JS, Ferguson M, et al. Validation of the Academy/ASPEN malnutrition clinical characteristics. J Acad Nutr Diet. 2016;116(5):856-64.
[8] Compton F, Bojarski C, Siegmund B, van der Giet M. Use of a nutrition support protocol to increase enteral nutrition delivery in critically ill patients. Am J Crit Care. 2014;23(5):396-403.
[9] Gomes F, Schuetz P, Bounoure L, Austin P, Ballesteros-Pomar M, Cederholm T, et al. ESPEN guidelines on nutritional support for polymorbid internal medicine patients. Clin Nutr. 2018;37(1):336-53.
[10] Preiser JC, van Zanten ARH, Berger MM, Biolo G, Casaer MP, Doig GS, et al. Metabolic and nutritional support of critically ill patients: consensus and controversies. Crit Care. 2015;19(1):35.
[11] Serón Arbeloa C, Martínez de la Gándara A, León Cinto C, Flordelís Lasierra JL, Márquez Vácaro JA. Recommendations for specialized nutritional-metabolic management of the critical patient: Macronutrient and micronutrient requirements. Med Intensiva (Engl Ed). 2020;44:24-32.
[12] Arabi YM, Casaer MP, Chapman M, Heyland DK, Ichai C, Marik PE, et al. The intensive care medicine research agenda in nutrition and metabolism. Intensive Care Med. 2017;43(9):1239-56.
[13] Elke G, van Zanten ARH, Lemieux M, McCall M, Jeejeebhoy KN, Kott M, et al. Enteral versus parenteral nutrition in critically ill patients: an updated systematic review and meta-analysis of randomized controlled trials. Crit Care. 2016;20(1):117.
[14] Sebranek JJ, Lugli AK, Coursin DB. Glycaemic control in the perioperative period. Br J Anaesth. 2013;111(Suppl 1):i18-34.
[15] Marik PE. Tight glycemic control in acutely ill patients: low evidence of benefit, high evidence of harm! Intensive Care Med. 2016;42(9):1475-7.
[16] Gunst J, Van den Berghe G. Blood glucose control in the ICU: don’t throw out the baby with the bathwater! Intensive Care Med. 2016;42:1478-81.
[17] Reignier J, Christopher KB, Arabi Y. Focus on nutrition and glucose control in the intensive care unit: recent advances and debates. Intensive Care Med. 2017;43(12):1904-6.
[18] Petros S, Horbach M, Seidel F, Weidhase L. Hypocaloric vs normocaloric nutrition in critically ill patients. J Parenter Enteral Nutr. 2016;40(2):242-9.
[19] Singer P, Anbar R, Cohen J, Shapiro H, Shalita-Chesner M, Lev S, et al. The tight calorie control study (TICACOS): a prospective, randomized, controlled pilot study of nutritional support in critically ill patients. Intensive Care Med. 2011;37:601-9.
[20] Phoswa WN, Mokgalaboni K. Immunological imbalances associated with epileptic seizures in type 2 diabetes mellitus. Brain Sci. 2023;13(5):732.
[21] Ropper AH, Samuel MA, Klein JP, et al. Adams and Victor’s Principles of Neurology. 11th ed. New York: McGraw Hill; 2019.
[22] Trinka E, Cock H, Hesdorffer D, Rossetti AO, Scheffer IE, Shinnar S, et al. A definition and classification of status epilepticus—Report of the ILAE Task Force on Classification of Status Epilepticus. Epilepsia. 2015;56(10):1515-23.
[23] Betjemann JP, Lowenstein DH. Status epilepticus in adults. Lancet Neurol. 2015;14(6):615-24.
[24] Sánchez Fernández I, Gaínza-Lein M, Lamb N, Loddenkemper T. Meta-analysis and cost-effectiveness of second-line antiepileptic drugs for status epilepticus. Neurology. 2019;92(20):e2339-48.
[25] Müllges W. [Diagnosis and treatment of status epilepticus in the intensive care unit]. Med Klin Intensivmed Notfmed. 2019;114(5):475-84.
[26] Wolff MD, Farrell JS, Scantlebury MH, Teskey GC. Dynamic oxygen changes during status epilepticus and subsequent endogenous kindling. Epilepsia. 2020;61(7):1515-27.
[27] Mathern GW, Price G, Rosales C, Pretorius JK, Lozada A, Mendoza D. Anoxia during kainate status epilepticus shortens behavioral convulsions but generates hippocampal neuron loss and supragranular mossy fiber sprouting. Epilepsy Res. 1998;30(2):133-51.
[28] Aksay SS, Bumb JM, Janke C, Hoyer C, Kranaster L, Sartorius A. New evidence for seizure quality improvement by hyperoxia and mild hypocapnia. J ECT. 2014;30(4):287-91.
[29] Nevander G, Ingvar M, Auer R, Siesjö BK. Status epilepticus in well-oxygenated rats causes neuronal necrosis. Ann Neurol. 1985;18(3):281-90.
[30] Shukla V, Shakya AK, Perez-Pinzon MA, Dave KR. Cerebral ischemic damage in diabetes: an inflammatory perspective. J Neuroinflammation. 2017;14(1):21.
[31] Moradi S, Kerman SRJ, Rohani F, Salari F. Association between diabetes complications and leukocyte counts in Iranian patients. J Inflamm Res. 2012;5:7-11.
[32] Nagendra L, Boro H, Mannar V. Bacterial infections in diabetes. In: Feingold KR, ed. Endotext [Internet]. South Dartmouth (MA): MDText.com, Inc.; 2022.
[33] Fauci AS, Jameson JL, Kasper D, et al. Harrison’s Principles of Internal Medicine. 19th ed. New York: McGraw-Hill Education; 2018.
[34] Baratawidjaja KG. Imunologi Dasar. Jakarta: Badan Penerbit FKUI; 2012.
[35] Powell LD, Chung P, Baum LG. In: Hoffman R, Benz EJ, Silberstein LE, et al, eds. Hematology: Basic Principles and Practice. 6th ed. Philadelphia: Elsevier Saunders; 2013.
[36] Holub M, Beran O, Kasprikova N, et al. Neutrophil to lymphocyte count ratio as a biomarker of bacterial infections. Cent Eur J Med. 2012;7(2):258-61.
[37] Lattanzi S, Cagnetti C, Rinaldi C, et al. Neutrophil-to-lymphocyte ratio improves outcome prediction of acute intracerebral hemorrhage. J Neurol Sci. 2018;387:98-102.
[38] Zahorec R. Neutrophil-to-lymphocyte ratio, past, present and future perspectives. Bratisl Med J. 2021;122(7):474-88.
[39] Pfortmueller CA, Meisel C, Fux M, Schefold JC. Assessment of immune organ dysfunction in critical illness: utility of innate immune response markers. Intensive Care Med Exp. 2017;5(1):49.
[40] Price SA, Lorraine MW. Patofisiologi: Konsep Klinis Proses-Proses Penyakit. Jakarta: EGC; 2016.
[41] Ganong WF. Buku Ajar Fisiologi Kedokteran. 22nd ed. Jakarta: EGC; 2013.
[42] Tazmini K, Nymo SH, Louch WE, Ranhoff AH, Øie E. Electrolyte imbalances in an unselected population in an emergency department: a retrospective cohort study. PLoS One. 2019;14(4):e0215673.
[43] Reid MD, Saka B, Balci S, Goldblum AS, Adsay NV. Molecular genetics of pancreatic neoplasms and their morphologic correlates: an update on recent advances and potential diagnostic applications. Am J Clin Pathol. 2014;141(2):168-80.
[44] Chawla R, Todi S. ICU Protocols. Springer International Publishing; 2012.
[45] Palmer LG, Schnermann J. Integrated control of Na transport along the nephron. Clin J Am Soc Nephrol. 2015;10(4):676-87.
[46] Lee JW. Fluid and electrolyte disturbances in critically ill patients. Electrolyte Blood Press. 2010;8(2):72-81.
[47] Assadi F. Diagnosis of hypokalemia: a problem-solving approach to clinical cases. Iran J Kidney Dis. 2008;2(3):115-22.
[48] Sherwood L. Introduction to Human Physiology. 9th ed. Boston: Cengage Learning; 2015.
[49] Kardalas E, Paschou SA, Anagnostis P, Muscogiuri G, Siasos G, Vryonidou A. Hypokalemia: a clinical update. Endocr Connect. 2018;7(4):R135-46.
[50] De Simone G, Di Masi A, Ascenzi P. Serum albumin: a multifaced enzyme. Int J Mol Sci. 2021;22(18):10086.
[51] Vincent JL, Russell JA, Jacob M, Martin G, Guidet B, Wernerman J, et al. Albumin administration in the acutely ill: what is new and where next? Crit Care. 2014;18(4):231.
Files
IssueArticle in Press QRcode
SectionCase Report(s)
Keywords
Medical Nutrition Therapy Critically Ill Diabetes Mellitus Cerebral Infarction Protein-Energy Malnutrition

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
1.
Safitri A, Hayat Y, Bamahry A. Medical Nutrition Therapy in Critically Ill Patients with Metabolic Encephalopathy, Diabetes Mellitus, Cerebral Infarction, and Status Epilepticus Complicated by Severe Protein-Energy Malnutrition: Case Report. Arch Anesth & Crit Care. 2025;.