Review Article

Application of Transcranial Direct Current Stimulation in Neurocritical Care

Abstract

Background: Transcranial direct current stimulation (tDCS) is an emerging, non-invasive neuromodulation technique with massive potential in neurocritical care settings. This review covers the applications, mechanisms, and outcomes of tDCS in patients with severe neurological disorders.
Methods: tDCS uses low-intensity direct current to modulate cortical excitability and induce neuroplasticity, which aids in recovering motor, cognitive, and sensory functions. Its simplicity and noninvasive nature enable bedside use, making it a good alternative to invasive interventions.
Results: The evidence suggests that tDCS improves recovery in stroke, TBI, and DOC by affecting synaptic plasticity, releasing neurotrophic factors, and improving cerebral perfusion. However, due to the variability in the methodology and stimulation parameters of the studies, further research is required to determine standardized protocols. Safety appears minimal, with most side effects including mild discomfort.
Conclusion: This review underlines the promise of tDCS as an adjunctive therapy in neurocritical care and recommends its integration into traditional rehabilitative strategies to enhance patient outcomes. Future studies should investigate optimizing stimulation parameters, long-term efficacy, and condition-specific applications to exploit tDCS's therapeutic benefits.

[1] Chen Y, Wang S, Xu S, Xu N, Zhang L, Zhou J. Current advances in neurocritical care. J Intensive Med. 2024; 5(1):23-31.
[2] Wu L, Citerio G, Gao G. Neuromodulation in the intensive care unit. Intensive Care Med. 2024; 50(9):1523-1525.
[3] Davidson B, Bhattacharya A, Sarica C, Darmani G, Raies N, Chen R, et al. Neuromodulation techniques - From non-invasive brain stimulation to deep brain stimulation. Neurotherapeutics. 2024; 21(3):e00330.
[4] Matsumoto H, Ugawa Y. Adverse events of tDCS and tACS: A review. Clin Neurophysiol Pract. 2016; 2:19-25.
[5] Tao M, Zhang S, Han Y, Li C, Wei Q, Chen D, et al. Efficacy of transcranial direct current stimulation on postoperative delirium in elderly patients undergoing lower limb major arthroplasty: A randomized controlled trial. Brain Stimul. 2023; 16(1):88-96.
[6] Siegert A, Diedrich L, Antal A. New Methods, Old Brains-A Systematic Review on the Effects of tDCS on the Cognition of Elderly People. Front Hum Neurosci. 2021; 15:730134.
[7] Majdi A, van Boekholdt L, Sadigh-Eteghad S, Mc Laughlin M. A systematic review and meta-analysis of transcranial direct-current stimulation effects on cognitive function in patients with Alzheimer's disease. Mol Psychiatry. 2022; 27(4):2000-2009.
[8] Suchting R, Teixeira AL, Ahn B, Colpo GD, Park J, Ahn H. Changes in Brain-derived Neurotrophic Factor From Active and Sham Transcranial Direct Current Stimulation in Older Adults With Knee Osteoarthritis. Clin J Pain. 2021; 37(12):898-903.
[9] Suchting R, Colpo GD, Rocha NP, Ahn H. The Effect of Transcranial Direct Current Stimulation on Inflammation in Older Adults With Knee Osteoarthritis: A Bayesian Residual Change Analysis. Biol Res Nurs. 2020; 22(1):57-63.
[10] Thair H, Holloway AL, Newport R, Smith AD. Transcranial Direct Current Stimulation (tDCS): A Beginner's Guide for Design and Implementation. Front Neurosci. 2017; 11:641.
[11] Woods AJ, Antal A, Bikson M, Boggio PS, Brunoni AR, Celnik P, et al. A technical guide to tDCS, and related non-invasive brain stimulation tools. Clin Neurophysiol. 2016; 127(2):1031-1048.
[12] Tanaka T, Isomura Y, Kobayashi K, Hanakawa T, Tanaka S, Honda M. Electrophysiological Effects of Transcranial Direct Current Stimulation on Neural Activity in the Rat Motor Cortex. Front Neurosci. 2020; 14:495.
[13] Thibaut A, Bruno MA, Ledoux D, Demertzi A, Laureys S. tDCS in patients with disorders of consciousness: sham-controlled randomized double-blind study. Neurology. 2014; 82(13):1112-8.
[14] Schlaug G, Renga V, Nair D. Transcranial direct current stimulation in stroke recovery. Arch Neurol. 2008; 65(12):1571-6.
[15] Nitsche MA, Paulus W. Transcranial direct current stimulation--update 2011. Restor Neurol Neurosci. 2011; 29(6):463-92.
[16] Lefaucheur JP, Antal A, Ayache SS, Benninger DH, Brunelin J, Cogiamanian F, et al. Evidence-based guidelines on the therapeutic use of transcranial direct current stimulation (tDCS). Clin Neurophysiol. 2017; 128(1):56-92.
[17] Huang J, Zhao K, Zhao Z, Qu Y. Neuroprotection by Transcranial Direct Current Stimulation in Rodent Models of Focal Ischemic Stroke: A Meta-Analysis. Front Neurosci. 2021; 15:761971.
[18] Stevens RD, Dowdy DW, Michaels RK, Mendez-Tellez PA, Pronovost PJ, Needham DM. Neuromuscular dysfunction acquired in critical illness: a systematic review. Intensive Care Med. 2007; 33(11):1876-91.
[19] Hiser SL, Fatima A, Ali M, et al. Post-intensive care syndrome (PICS): recent updates. J Intensive Care. 2023; 11:23.
[20] Frisvold S, Coppola S, Ehrmann S, Chiumello D, Guérin C. Respiratory challenges and ventilatory management in different types of acute brain-injured patients. Crit Care. 2023; 27(1):247.
[21] Della Torre V, Badenes R, Corradi F, Racca F, Lavinio A, Matta B, et al. Acute respiratory distress syndrome in traumatic brain injury: how do we manage it? J Thorac Dis. 2017; 9(12):5368-5381.
[22] Sánchez-Kuhn A, Pérez-Fernández C, Cánovas R, Flores P, Sánchez-Santed F. Transcranial direct current stimulation as a motor neurorehabilitation tool: an empirical review. Biomed Eng Online. 2017; 16(Suppl 1):76.
[23] Faria P, Hallett M, Miranda PC. A finite element analysis of the effect of electrode area and inter-electrode distance on the spatial distribution of the current density in tDCS. J Neural Eng. 2011; 8(6):066017.
[24] Minhas P, Bikson M, Woods AJ, Rosen AR, Kessler SK. Transcranial direct current stimulation in pediatric brain: a computational modeling study. Annu Int Conf IEEE Eng Med Biol Soc. 2012; 2012:859-62.
[25] Nitsche MA, Paulus W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol. 2000; 527(Pt 3):633-9.
[26] Nitsche MA, Cohen LG, Wassermann EM, Priori A, Lang N, Antal A, et al. Transcranial direct current stimulation: State of the art 2008. Brain Stimul. 2008; 1(3):206-23.
[27] Costa TL, Lapenta OM, Boggio PS, Ventura DF. Transcranial direct current stimulation as a tool in the study of sensory-perceptual processing. Atten Percept Psychophys. 2015; 77(6):1813-40.
[28] DaSilva AF, Volz MS, Bikson M, Fregni F. Electrode positioning and montage in transcranial direct current stimulation. J Vis Exp. 2011; (51):2744.
[29] Schneider HD, Hopp JP. The use of the Bilingual Aphasia Test for assessment and transcranial direct current stimulation to modulate language acquisition in minimally verbal children with autism. Clin Linguist Phon. 2011; 25(6-7):640-54.
[30] Ardolino G, Bossi B, Barbieri S, Priori A. Non-synaptic mechanisms underlie the after-effects of cathodal transcutaneous direct current stimulation of the human brain. J Physiol. 2005; 568(Pt 2):653-63.
[31] Boggio PS, Zaghi S, Lopes M, Fregni F. Modulatory effects of anodal transcranial direct current stimulation on perception and pain thresholds in healthy volunteers. Eur J Neurol. 2008; 15(10):1124-30.
[32] Boggio PS, Zaghi S, Fregni F. Modulation of emotions associated with images of human pain using anodal transcranial direct current stimulation (tDCS). Neuropsychologia. 2009; 47(1):212-7.
[33] Katan M, Luft A. Global Burden of Stroke. Semin Neurol. 2018; 38(2):208-211.
[34] Priori A. Brain polarization in humans: a reappraisal of an old tool for prolonged non-invasive modulation of brain excitability. Clin Neurophysiol. 2003; 114(4):589-95.
[35] Gomez Palacio Schjetnan A, Faraji J, Metz GA, Tatsuno M, Luczak A. Transcranial direct current stimulation in stroke rehabilitation: a review of recent advancements. Stroke Res Treat. 2013; 2013:170256.
[36] Murphy TH, Corbett D. Plasticity during stroke recovery: from synapse to behaviour. Nat Rev Neurosci. 2009; 10(12):861-72.
[37] Wachter D, Wrede A, Schulz-Schaeffer W, Taghizadeh-Waghefi A, Nitsche MA, Kutschenko A, et al. Transcranial direct current stimulation induces polarity-specific changes of cortical blood perfusion in the rat. Exp Neurol. 2011; 227(2):322-7.
[38] Fritsch B, Reis J, Martinowich K, Schambra HM, Ji Y, Cohen LG, et al. Direct current stimulation promotes BDNF-dependent synaptic plasticity: potential implications for motor learning. Neuron. 2010; 66(2):198-204.
[39] Longo V, Barbati SA, Re A, Paciello F, Bolla M, Rinaudo M, et al. Transcranial Direct Current Stimulation Enhances Neuroplasticity and Accelerates Motor Recovery in a Stroke Mouse Model. Stroke. 2022; 53(5):1746-1758.
[40] Nair D, Renga V, Hamelin S, Pascual-Leone A, Schlaug G. Improving motor function in chronic stroke patients using simultaneous occupational therapy and tDCS. Stroke. 2008; 39(2):542-542.
[41] Hesse S, Werner C, Schonhardt EM, Bardeleben A, Jenrich W, Kirker SG. Combined transcranial direct current stimulation and robot-assisted arm training in subacute stroke patients: a pilot study. Restor Neurol Neurosci. 2007; 25(1):9-15.
[42] Tremblay S, Lepage JF, Latulipe-Loiselle A, Fregni F, Pascual-Leone A, Théoret H. The uncertain outcome of prefrontal tDCS. Brain Stimul. 2014; 7(6):773-83.
[43] Fregni F, El-Hagrassy MM, Pacheco-Barrios K, Carvalho S, Leite J, Simis M, et al. Evidence-Based Guidelines and Secondary Meta-Analysis for the Use of Transcranial Direct Current Stimulation in Neurological and Psychiatric Disorders. Int J Neuropsychopharmacol. 2021; 24(4):256-313.
[44] Turgut N, Miranda M, Kastrup A, Eling P, Hildebrandt H. tDCS combined with optokinetic drift reduces egocentric neglect in severely impaired post-acute patients. Neuropsychol Rehabil. 2018; 28(4):515-526.
[45] Oldrati V, Colombo B, Antonietti A. Combination of a short cognitive training and tDCS to enhance visuospatial skills: A comparison between online and offline neuromodulation. Brain Res. 2018; 1678:32-39.
[46] Kolskår KK, Richard G, Alnaes D, Dørum ES, Sanders AM, Ulrichsen KM, et al. Reliability, sensitivity, and predictive value of fMRI during multiple object tracking as a marker of cognitive training gain in combination with tDCS in stroke survivors. Hum Brain Mapp. 2021; 42(4):1167-1181.
[47] Ziai WC, Carhuapoma JR. Intracerebral Hemorrhage. Continuum (Minneap Minn). 2018; 24(6):1603-1622.
[48] Heidarzadegan AR, Zarifkar A, Sotoudeh N, Namavar MR, Zarifkar AH. Different paradigms of transcranial electrical stimulation improve motor function impairment and striatum tissue injuries in the collagenase-induced intracerebral hemorrhage rat model. BMC Neurosci. 2022; 23(1):6.
[49] Mortensen J, Figlewski K, Andersen H. Combined transcranial direct current stimulation and home-based occupational therapy for upper limb motor impairment following intracerebral hemorrhage: a double-blind randomized controlled trial. Disabil Rehabil. 2016; 38(7):637-43.
[50] Rinkel GJ, Algra A. Long-term outcomes of patients with aneurysmal subarachnoid haemorrhage. Lancet Neurol. 2011; 10(4):349-56.
[51] van Donkelaar CE, Bakker NA, Birks J, Veeger NJGM, Metzemaekers JDM, Molyneux AJ, et al. Prediction of Outcome After Aneurysmal Subarachnoid Hemorrhage. Stroke. 2019; 50(4):837-844.
[52] Malinova V, Bleuel K, Stadelmann C, Iliev B, Tsogkas I, Psychogios MN, et al. The impact of transcranial direct current stimulation on cerebral vasospasm in a rat model of subarachnoid hemorrhage. J Cereb Blood Flow Metab. 2021; 41(8):2000-2009.
[53] Menon DK, Schwab K, Wright DW, Maas AI. Position statement: definition of traumatic brain injury. Arch Phys Med Rehabil. 2010; 91(11):1637-40.
[54] McAllister TW. Neurobiological consequences of traumatic brain injury. Dialogues Clin Neurosci. 2011; 13(3):287-300.
[55] Jones TA, Liput DJ, Maresh EL, Donlan N, Parikh TJ, Marlowe D, et al. Use-dependent dendritic regrowth is limited after unilateral controlled cortical impact to the forelimb sensorimotor cortex. J Neurotrauma. 2012; 29(7):1455-68.
[56] Li S, Zaninotto AL, Neville IS, Paiva WS, Nunn D, Fregni F. Clinical utility of brain stimulation modalities following traumatic brain injury: current evidence. Neuropsychiatr Dis Treat. 2015; 11:1573-86.
[57] Pinchuk D, Pinchuk O, Sirbiladze K, Shugar O. Clinical effectiveness of primary and secondary headache treatment by transcranial direct current stimulation. Front Neurol. 2013; 4:25.
[58] Quinn DK, Upston J, Jones T, Brandt E, Story-Remer J, Fratzke V, et al. Cerebral Perfusion Effects of Cognitive Training and Transcranial Direct Current Stimulation in Mild-Moderate TBI. Front Neurol. 2020; 11:545174.
[59] Park G, Suh JH, Han SJ. Transcranial direct current stimulation for balance and gait in repetitive mild traumatic brain injury in rats. BMC Neurosci. 2021; 22(1):26.
[60] Barbey AK, Koenigs M, Grafman J. Dorsolateral prefrontal contributions to human working memory. Cortex. 2013; 49(5):1195-205.
[61] Leśniak M, Polanowska K, Seniów J, Członkowska A. Effects of repeated anodal tDCS coupled with cognitive training for patients with severe traumatic brain injury: a pilot randomized controlled trial. J Head Trauma Rehabil. 2014; 29(3):E20-9.
[62] Deliagina TG, Zelenin PV, Beloozerova IN, Orlovsky GN. Nervous mechanisms controlling body posture. Physiol Behav. 2007; 92(1-2):148-54.
[63] Jacobs JV, Horak FB. Cortical control of postural responses. J Neural Transm (Vienna). 2007; 114(10):1339-48.
[64] Yosephi MH, Ehsani F, Zoghi M, Jaberzadeh S. Multi-session anodal tDCS enhances the effects of postural training on balance and postural stability in older adults with high fall risk: Primary motor cortex versus cerebellar stimulation. Brain Stimul. 2018; 11(6):1239-1250.
[65] Sussman D, da Costa L, Chakravarty MM, Pang EW, Taylor MJ, Dunkley BT. Concussion induces focal and widespread neuromorphological changes. Neurosci Lett. 2017; 650:52-59.
[66] Opie GM, Liao WY, Semmler JG. Interactions Between Cerebellum and the Intracortical Excitatory Circuits of Motor Cortex: a Mini-Review. Cerebellum. 2022; 21(1):159-166.
[67] Fonteneau C, Redoute J, Haesebaert F, Le Bars D, Costes N, Suaud-Chagny MF, et al. Frontal Transcranial Direct Current Stimulation Induces Dopamine Release in the Ventral Striatum in Human. Cereb Cortex. 2018; 28(7):2636-2646.
[68] Fukai M, Bunai T, Hirosawa T, Kikuchi M, Ito S, Minabe Y, et al. Endogenous dopamine release under transcranial direct-current stimulation governs enhanced attention: a study with positron emission tomography. Transl Psychiatry. 2019; 9(1):115.
[69] Grami F, de Marco G, Bodranghien F, Manto M, Habas C. Cerebellar transcranial direct current stimulation reconfigurates static and dynamic functional connectivity of the resting-state networks. Cerebellum Ataxias. 2021; 8(1):7.
[70] Zaninotto AL, El-Hagrassy MM, Green JR, Babo M, Paglioni VM, Benute GG, et al. Transcranial direct current stimulation (tDCS) effects on traumatic brain injury (TBI) recovery: A systematic review. Dement Neuropsychol. 2019; 13(2):172-179.
[71] Fisher RS, McGinn RJ, Von Stein EL, Wu TQ, Qing KY, Fogarty A, et al. Transcranial direct current stimulation for focal status epilepticus or lateralized periodic discharges in four patients in a critical care setting. Epilepsia. 2023; 64(4):875-887.
[72] Fregni F, Thome-Souza S, Nitsche MA, Freedman SD, Valente KD, Pascual-Leone A. A controlled clinical trial of cathodal DC polarization in patients with refractory epilepsy. Epilepsia. 2006; 47(2):335-42.
[73] Shelyakin AM, Preobrazhenskaya IG, Kassil' MV, Bogdanov OV. The effects of transcranial micropolarization on the severity of convulsive fits in children. Neurosci Behav Physiol. 2001; 31(5):555-60.
[74] San-Juan D, Sarmiento CI, González KM, Orenday Barraza JM. Successful Treatment of a Drug-Resistant Epilepsy by Long-term Transcranial Direct Current Stimulation: A Case Report. Front Neurol. 2018; 9:65.
[75] Yook SW, Park SH, Seo JH, Kim SJ, Ko MH. Suppression of seizure by cathodal transcranial direct current stimulation in an epileptic patient - a case report -. Ann Rehabil Med. 2011; 35(4):579-82.
[76] Marquardt L, Eichele T, Bindoff LA, Olberg HK, Veiby G, Eichele H, et al. No effect of electrical transcranial direct current stimulation adjunct treatment for epilepsia partialis continua in POLG disease. Epilepsy Behav Rep. 2019; 12:100339.
[77] Kumar R, Yadav R, Prajapati HP, Kumar S, Potturi GS, Sharma R. Effect of Transcranial direct current stimulation (tDCS) on altered conscious patients after traumatic brain injury & cerebrovascular accident: A randomized clinical control trial. Neurology Asia. 2022; 27(2).
[78] Bourdillon P, Hermann B, Sitt JD, Naccache L. Electromagnetic Brain Stimulation in Patients With Disorders of Consciousness. Front Neurosci. 2019; 13:223.
[79] Thibaut A, Schiff N, Giacino J, Laureys S, Gosseries O. Therapeutic interventions in patients with prolonged disorders of consciousness. Lancet Neurol. 2019; 18(6):600-614.
[80] Li Y, Li L, Huang H. Effect of non-invasive brain stimulation on conscious disorder in patients after brain injury: a network meta-analysis. Neurol Sci. 2023; 44(7):2311-2327.
[81] Feng Y, Zhang J, Zhou Y, Bai Z, Yin Y. Noninvasive brain stimulation for patients with a disorder of consciousness: a systematic review and meta-analysis. Rev Neurosci. 2020; 31(8).
[82] Ma H, Zhao K, Jia C, You J, Zhou M, Wang T, et al. Effect of transcranial direct current stimulation for patients with disorders of consciousness: A systematic review and meta-analysis. Front Neurosci. 2023; 16:1081278.
[83] Monti MM. Cognition in the vegetative state. Annu Rev Clin Psychol. 2012; 8:431-54.
[84] Bai Y, Xia X, Kang J, Yang Y, He J, Li X. TDCS modulates cortical excitability in patients with disorders of consciousness. Neuroimage Clin. 2017; 15:702-709.
[85] Nitsche MA, Nitsche MS, Klein CC, Tergau F, Rothwell JC, Paulus W. Level of action of cathodal DC polarisation induced inhibition of the human motor cortex. Clin Neurophysiol. 2003; 114(4):600-4.
[86] De Koninck BP, Brazeau D, Deshaies AA, Briand MM, Maschke C, Williams V, et al. Modulation of brain activity in brain-injured patients with a disorder of consciousness in intensive care with repeated 10-Hz transcranial alternating current stimulation (tACS): a randomised controlled trial protocol. BMJ Open. 2024; 14(7):e078281.
[87] Martens G, Fregni F, Carrière M, Barra A, Laureys S, Thibaut A. Single tDCS session of motor cortex in patients with disorders of consciousness: a pilot study. Brain Inj. 2019; 33(13-14):1679-1683.
[88] Barra A, Rosenfelder M, Mortaheb S, Carrière M, Martens G, Bodien YG, et al. Transcranial Pulsed-Current Stimulation versus Transcranial Direct Current Stimulation in Patients with Disorders of Consciousness: A Pilot, Sham-Controlled Cross-Over Double-Blind Study. Brain Sci. 2022; 12(4):429.
[89] Martens G, Kroupi E, Bodien Y, Frasso G, Annen J, Cassol H, et al. Behavioral and electrophysiological effects of network-based frontoparietal tDCS in patients with severe brain injury: A randomized controlled trial. Neuroimage Clin. 2020; 28:102426.
[90] Estraneo A, Pascarella A, Moretta P, Masotta O, Fiorenza S, Chirico G, et al. Repeated transcranial direct current stimulation in prolonged disorders of consciousness: A double-blind cross-over study. J Neurol Sci. 2017; 375:464-470.
[91] Huang W, Wannez S, Fregni F, Hu X, Jing S, Martens G, et al. Repeated stimulation of the posterior parietal cortex in patients in minimally conscious state: A sham-controlled randomized clinical trial. Brain Stimul. 2017; 10(3):718-720.
[92] Zhang Y, Song W, Du J, Huo S, Shan G, Li R. Transcranial Direct Current Stimulation in Patients with Prolonged Disorders of Consciousness: Combined Behavioral and Event-Related Potential Evidence. Front Neurol. 2017; 8:620.
[93] Wu M, Yu Y, Luo L, Wu Y, Gao J, Ye X, et al. Efficiency of Repetitive Transcranial Direct Current Stimulation of the Dorsolateral Prefrontal Cortex in Disorders of Consciousness: A Randomized Sham-Controlled Study. Neural Plast. 2019; 2019:7089543.
[94] Yang J, Li X, Yang X, Zhu T, Ou S. Acute Traumatic Coma Awakening Induced by Median Nerve Electrical Stimulation: A Systematic Review and Meta-Analysis. Neurocrit Care. 2025; 42(3):817-828.
[95] Cirillo G, Di Pino G, Capone F, Ranieri F, Florio L, Todisco V, et al. Neurobiological after-effects of non-invasive brain stimulation. Brain Stimul. 2017; 10(1):1-18.
[96] Kronberg G, Bridi M, Abel T, Bikson M, Parra LC. Direct Current Stimulation Modulates LTP and LTD: Activity Dependence and Dendritic Effects. Brain Stimul. 2017; 10(1):51-58.
[97] Pisani MA, Murphy TE, Araujo KL, Van Ness PH. Factors associated with persistent delirium after intensive care unit admission in an older medical patient population. J Crit Care. 2010; 25(3):540.e1-7.
[98] Brunoni AR, Moffa AH, Fregni F, Palm U, Padberg F, Blumberger DM, Daskalakis ZJ, Bennabi D, Haffen E, Alonzo A, Loo CK. Transcranial direct current stimulation for acute major depressive episodes: meta-analysis of individual patient data. Br J Psychiatry. 2016;208(6):522-31.
[99] Thibaut A, Di Perri C, Chatelle C, Bruno MA, Bahri MA, Wannez S, et al. Clinical Response to tDCS Depends on Residual Brain Metabolism and Grey Matter Integrity in Patients With Minimally Conscious State. Brain Stimul. 2015; 8(6):1116-23.
[100] Cavaliere C, Aiello M, Di Perri C, Amico E, Martial C, Thibaut A, et al. Functional Connectivity Substrates for tDCS Response in Minimally Conscious State Patients. Front Cell Neurosci. 2016; 10:257.
Files
IssueArticle in Press QRcode
SectionReview Article(s)
Keywords
tDCS neuro-intensive care critical care Transcranial direct current stimulation review

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
1.
Hajiesmaeili M, Goharani R, Zangi M, Amirdosara M, Mokhtari M. Application of Transcranial Direct Current Stimulation in Neurocritical Care. Arch Anesth & Crit Care. 2026;.