Respiratory Management of Acute Cardiogenic Pulmonary Edema: A Review
Abstract
Acute cardiogenic pulmonary edema (ACPE) is a common and life-threatening condition among patients with heart failure. The literature contains a large number of reviews discussing the respiratory management aspect of this entity; nonetheless, none of these studies has thoroughly probed into the respiratory management of different cardiac pathologies ending with ACPE, together with the different modes of ventilation and invasive and noninvasive ventilation in the same discussion. The present review seeks to discuss the physiologic bases of lung-heart interactions, the hemodynamic effects of positive pressure ventilation, and the results of studies on the effects of the various modes of ventilation having been used until the writing of this article. Also discussed herein are ACPE in different heart pathologies and their respective ventilator management, as well as the indications, complications, and contraindications of noninvasive positive pressure ventilation and intermittent mandatory ventilation.
[2] Berbenetz N, Wang Y, Brown J, Godfrey C, Ahmad M, Vital FM, et al. Non‐invasive positive pressure ventilation (CPAP or bilevel NPPV) for cardiogenic pulmonary oedema. Cochrane Database Syst Rev. 2019; (4).
[3] Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JG, Coats AJ, et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC)Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J. 2016; 37(27):2129-2200.
[4] Teboul J-L, Monnet X, Richard C. Weaning failure of cardiac origin: recent advances. Crit Care. 2010;14(2):211.
[5] Feihl F, Broccard AF. Interactions between respiration and systemic hemodynamics. Part I: basic concepts. Intensive Care Med. 2009; 35(1):45-54.
[6] Moschietto S, Doyen D, Grech L, Dellamonica J, Hyvernat H, Bernardin G. Transthoracic echocardiography with Doppler tissue imaging predicts weaning failure from mechanical ventilation: evolution of the left ventricle relaxation rate during a spontaneous breathing trial is the key factor in weaning outcome. Crit Care. 2012;16(3): R81.
[7] Pinsky M. The hemodynamic consequences of mechanical ventilation: an evolving story. Intensive care med. 1997; 23(5):493-503.
[8] Jellinek H, Krenn H, Oczenski W, Veit F, Schwarz S, Fitzgerald R. Influence of positive airway pressure on the pressure gradient for venous return in humans. J Appl Physiol (1985). 2000; 88(3):926-32.
[9] Dres M, Teboul J-L, Monnet X. Weaning the cardiac patient from mechanical ventilation. Curr Opin Crit Care. 2014; 20(5):493-8.
[10] Grasso S, Pisani L. Weaning and the Heart: From Art to Science. Crit Care Med. 2014; 42(8):1954-5.
[11] Shekerdemian LS, Bush A, Lincoln C, Shore DF, Petros AJ, Redington AN. Cardiopulmonary interactions in healthy children and children after simple cardiac surgery: the effects of positive and negative pressure ventilation. Heart. 1997; 78(6):587-93.
[12] Wise RA, Robotham J, Summer W. Effects of spontaneous ventilation on the circulation. Lung. 1981; 159(1):175-86.
[13] Duke G. Cardiovascular effects of mechanical ventilation. Crit Care and Resuscitation. 1999;1(4):388.
[14] Scharf SM, Brown R, Saunders N, Green L. Effects of normal and loaded spontaneous inspiration on cardiovascular function. J Appl Physiol Respir Environ Exerc Physiol. 1979; 47(3):582-90.
[15] Scharf SM, Brown R, Tow DE, Parisi A. Cardiac effects of increased lung volume and decreased pleural pressure in man. J Appl Physiol Respir Environ Exerc Physiol. 1979;47(2):257-62.
[16] Melo MFV, Layfield D, Harris RS, O’Neill K, Musch G, Richter T, et al. Quantification of regional ventilation-perfusion ratios with PET. J Nucl Med. 2003; 44(12):1982-91.
[17] Musch G, Layfield JDH, Harris RS, Melo MFV, Winkler T, Callahan RJ, et al. Topographical distribution of pulmonary perfusion and ventilation, assessed by PET in supine and prone humans. J Appl Physiol (1985). 2002; 93(5):1841-51.
[18] Melsom M, Flatebø T, Kramer‐Johansen J, Aulie A, Sjaastad OV, Iversen PO, et al. Both gravity and non‐gravity dependent factors determine regional blood flow within the goat lung. Acta Physiol Scand. 1995;153(4):343-53.
[19] Petersson J, Rohdin M, Sanchez-Crespo A, Nyren S, Jacobsson H, Larsson SA, et al. Regional lung blood flow and ventilation in upright humans studied with quantitative SPECT. Respir Physiol Neurobiol. 2009;166(1):54-60.
[20] Bikker IG, Holland W, Specht P, Ince C, Gommers D. Assessment of ventilation inhomogeneity during mechanical ventilation using a rapid-response oxygen sensor-based oxygen washout method. Intensive Care Med Exp. 2014; 2(1):14.
[21] Modell JH. Ventilation/perfusion changes during mechanical ventilation. Dis Chest. 1969; 55(6):447-51.
[22] Yoshida T, Uchiyama A, Fujino Y. The role of spontaneous effort during mechanical ventilation: normal lung versus injured lung. J Intensive Care. 2015; 3(1):18.
[23] Putensen C, Räsänen J, López FA, Downs JB. Effect of interfacing between spontaneous breathing and mechanical cycles on the ventilation-perfusion distribution in canine lung injury. Anesthesiology. 1994;81(4):921-30.
[24] Yoshida T, Uchiyama A, Matsuura N, Mashimo T, Fujino Y. The comparison of spontaneous breathing and muscle paralysis in two different severities of experimental lung injury. Crit Care Med. 2013; 41(2):536-45.
[25] Barrow A, Pandit JJ. Lung ventilation and the physiology of breathing. Surgery (Oxford). 2014; 32(5):221-7.
[26] Schuster DP, Howard DK. The effect of positive end-expiratory pressure on regional pulmonary perfusion during acute lung injury. J crit care. 1994; 9(2):100-10.
[27] Gernoth C, Wagner G, Pelosi P, Luecke T. Respiratory and haemodynamic changes during decremental open lung positive end-expiratory pressure titration in patients with acute respiratory distress syndrome. Crit Care. 2009;13(2):R59.
[28] Dessap AM, Charron C, Devaquet J, Aboab J, Jardin F, Brochard L, et al. Impact of acute hypercapnia and augmented positive end-expiratory pressure on right ventricle function in severe acute respiratory distress syndrome. Intensive care med. 2009; 35(11):1850-8.
[29] Scharf SM, Bianco JA, Tow D, Brown R. The effects of large negative intrathoracic pressure on left ventricular function in patients with coronary artery disease. Circulation. 1981; 63(4):871-5.
[30] Cheifetz IM. Cardiorespiratory Interactions: The Relationship Between Mechanical Ventilation and Hemodynamics. Respir care. 2014; 59(12):1937-45.
[31] Vieillard-Baron A, Chergui K, Augarde R, Prin S, Page B, Beauchet A, et al. Cyclic changes in arterial pulse during respiratory support revisited by Doppler echocardiography. Am J Respir Crit Care Med. 2003; 168(6):671-6.
[32] Coriat P, Vrillon M, Perel A, Baron JF, Le Bret F, Saada M, et al. A comparison of systolic blood pressure variations and echocardiographic estimates of end-diastolic left ventricular size in patients after aortic surgery. Anesth Analg. 1994; 78(1):46-53.
[33] Mariani J, Macchia A, Belziti C, DeAbreu M, Gagliardi J, Doval H, et al. Noninvasive ventilation in acute cardiogenic pulmonary edema: a meta-analysis of randomized controlled trials. J Card Fail. 2011;17(10):850-9.
[34] Weng C-L, Zhao Y-T, Liu Q-H, Fu C-J, Sun F, Ma Y-L, et al. Meta-analysis: noninvasive ventilation in acute cardiogenic pulmonary edema. Ann Intern Med. 2010; 152(9):590-600.
[35] Potts JM. Noninvasive positive pressure ventilation. Pol Arch Intern Med. 2009;119(6):349-53.
[36] Aliberti S, Rosti VD, Travierso C, Brambilla AM, Piffer F, Petrelli G, et al. A real life evaluation of non invasive ventilation in acute cardiogenic pulmonary edema: a multicenter, perspective, observational study for the ACPE SIMEU study group. BMC Emerg Med. 2018; 18(1):61.
[37] Gray A, Goodacre S, Newby DE, Masson M, Sampson F, Nicholl J. Noninvasive ventilation in acute cardiogenic pulmonary edema. N Engl J Med. 2008; 359(2):142-51.
[38] Xu X-P, Zhang X-C, Hu S-L, Xu J-Y, Xie J-F, Liu S-Q, et al. Noninvasive ventilation in acute hypoxemic nonhypercapnic respiratory failure: a systematic review and meta-analysis. Crit Care Med. 2017; 45(7):e727.
[39] Bello G, De Santis P, Antonelli M. Non-invasive ventilation in cardiogenic pulmonary edema. Ann Transl Med. 2018; 6(18):355.
[40] Vital FM, Ladeira MT, Atallah ÁN. Non‐invasive positive pressure ventilation (CPAP or bilevel NPPV) for cardiogenic pulmonary oedema. Cochrane Database Syst Rev. 2013(5).
[41] Tallman TA, Peacock WF, Emerman CL, Lopatin M, Blicker JZ, Weber J, et al. Noninvasive ventilation outcomes in 2,430 acute decompensated heart failure patients: an ADHERE Registry Analysis. Acad Emerg Med. 2008;15(4):355-62.
[42] Lazzeri C, Gensini GF, Picariello C, Attanà P, Mattesini A, Chiostri M, et al. Acidemia in severe acute cardiogenic pulmonary edema treated with noninvasive pressure support ventilation: a single-center experience. J Cardiovasc Med. 2015;16(9):610-5.
[43] Keenan SP, Sinuff T, Burns KE, Muscedere J, Kutsogiannis J, Mehta S, et al. Clinical practice guidelines for the use of noninvasive positive-pressure ventilation and noninvasive continuous positive airway pressure in the acute care setting. CMAJ. 2011; 183(3):E195-E214.
[44] Rochwerg B, Brochard L, Elliott MW, Hess D, Hill NS, Nava S, et al. Official ERS/ATS clinical practice guidelines: noninvasive ventilation for acute respiratory failure. Eur Respir J. 2017; 50(2):1602426.
[45] Cabrini L, Landoni G, Oriani A, Plumari VP, Nobile L, Greco M, et al. Noninvasive ventilation and survival in acute care settings: a comprehensive systematic review and metaanalysis of randomized controlled trials. Crit Care Med. 2015; 43(4):880-8.
[46] Kwok H, McCormack J, Cece R, Houtchens J, Hill NS. Controlled trial of oronasal versus nasal mask ventilation in the treatment of acute respiratory failure. Crit Care Med. 2003; 31(2):468-73.
[47] Räsänen J, Heikkilä J, Downs J, Nikki P, Väisänen I, Viitanen A. Continuous positive airway pressure by face mask in acute cardiogenic pulmonary edema. Am J Cardiol. 1985; 55(4):296-300.
[48] Bersten AD, Holt AW, Vedig AE, Skowronski GA, Baggoley CJ. Treatment of severe cardiogenic pulmonary edema with continuous positive airway pressure delivered by face mask. N Engl J Med. 1991;325(26):1825-30.
[49] Lin M, Yang Y-F, Chiang H-T, Chang M-S, Chiang BN, Cheitlin MD. Reappraisal of continuous positive airway pressure therapy in acute cardiogenic pulmonary edema: short-term results and long-term follow-up. Chest. 1995; 107(5):1379-86.
[50] Maraffi T, Brambilla AM, Cosentini R. Non-invasive ventilation in acute cardiogenic pulmonary edema: how to do it. Intern Emerg Med. 2018;13(1):107-11.
[51] Bendjelid K, Schutz N, Suter PM, Fournier G, Jacques D, Fareh S, et al. Does continuous positive airway pressure by face mask improve patients with acute cardiogenic pulmonary edema due to left ventricular diastolic dysfunction? Chest. 2005; 127(3):1053-8.
[52] Bellone A, Vettorello M, Etteri M, Bonetti C, Gini G, Mariani M, et al. The role of continuous positive airway pressure in acute cardiogenic edema with preserved left ventricular systolic function. Am J Emerg Med. 2009;27(8):986-91.
[53] L’Her E, Duquesne F, Girou E, de Rosiere XD, Le Conte P, Renault S, et al. Noninvasive continuous positive airway pressure in elderly cardiogenic pulmonary edema patients. Intensive Care Med. 2004;30(5):882-8.
[54] Bellone A, Barbieri A, Ricci C, Iori E, Donateo M, Massobrio M, et al. Acute effects of non-invasive ventilatory support on functional mitral regurgitation in patients with exacerbation of congestive heart failure. Intensive Care Med. 2002;28(9):1348-50.
[55] Austin MA, Wills K, Kilpatrick D, Walters EH. Continuous positive airway pressure plus low flow oxygen versus usual care of severe acute cardiogenic pulmonary edema in the pre-hospital setting: A randomised controlled trial. F1000Res. 2018;7.
[56] Winck JC, Azevedo LF, Costa-Pereira A, Antonelli M, Wyatt JC. Efficacy and safety of non-invasive ventilation in the treatment of acute cardiogenic pulmonary edema–a systematic review and meta-analysis. Crit Care. 2006; 10(2):R69.
[57] Li H, Hu C, Xia J, Li X, Wei H, Zeng X, et al. A comparison of bilevel and continuous positive airway pressure noninvasive ventilation in acute cardiogenic pulmonary edema. Am J Emerg Med. 2013;31(9):1322-7.
[58] Yamamoto T, Takeda S, Sato N, Akutsu K, Mase H, Nakazato K, et al. Noninvasive ventilation in pulmonary edema complicating acute myocardial infarction. Circulation. 2012; 76(11):2586-91.
[59] Liesching T, Nelson DL, Cormier KL, Sucov A, Short K, Warburton R, et al. Randomized trial of bilevel versus continuous positive airway pressure for acute pulmonary edema. J Emerg Med. 2014; 46(1):130-40.
[60] Yoshida M, Kadokami T, Momii H, Hayashi A, Urashi T, Narita S, et al. Enhancement of cardiac performance by bilevel positive airway pressure ventilation in heart failure. J Card Fail. 2012; 18(12):912-8.
[61] Contou D, Fragnoli C, Córdoba-Izquierdo A, Boissier F, Brun-Buisson C, Thille AW. Severe but not mild hypercapnia affects the outcome in patients with severe cardiogenic pulmonary edema treated by non-invasive ventilation. Ann Intensive Care. 2015;5(1):14.
[62] Nouira S, Boukef R, Bouida W, Kerkeni W, Beltaief K, Boubaker H, et al. Non-invasive pressure support ventilation and CPAP in cardiogenic pulmonary edema: a multicenter randomized study in the emergency department. Intensive Care Med. 2011;37(2):249-56.
[63] Ferrari G, Milan A, Groff P, Pagnozzi F, Mazzone M, Molino P, et al. Continuous positive airway pressure vs. pressure support ventilation in acute cardiogenic pulmonary edema: a randomized trial. J Emerg Med. 2010; 39(5):676-84.
[64] Salman A, Milbrandt EB, Pinsky MR. The role of noninvasive ventilation in acute cardiogenic pulmonary edema. Crit Care. 2010;14(2):303.
[65] Lenglet H, Sztrymf B, Leroy C, Brun P, Dreyfuss D, Ricard J-D. Humidified high flow nasal oxygen during respiratory failure in the emergency department: feasibility and efficacy. Respir Care. 2012; 57(11):1873-8.
[66] Groves N, Tobin A. High flow nasal oxygen generates positive airway pressure in adult volunteers. Aust Crit Care. 2007; 20(4):126-31.
[67] Tinelli V, Cabrini L, Fominskiy E, Franchini S, Ferrante L, Ball L, et al. High Flow Nasal Cannula Oxygen vs. Conventional Oxygen Therapy and Noninvasive Ventilation in Emergency Department Patients: A Systematic Review and Meta-Analysis. J Emerg Med. 2019; 57(3):322-8.
[68] Makdee O, Monsomboon A, Surabenjawong U, Praphruetkit N, Chaisirin W, Chakorn T, et al. High-flow nasal cannula versus conventional oxygen therapy in emergency department patients with cardiogenic pulmonary edema: a randomized controlled trial. Ann Emerg Med. 2017; 70(4):465-72.
[69] Roca O, Pérez-Terán P, Masclans JR, Pérez L, Galve E, Evangelista A, et al. Patients with New York Heart Association class III heart failure may benefit with high flow nasal cannula supportive therapy: high flow nasal cannula in heart failure. Crit Care Med. 2013; 28(5):741-6.
[70] Zhao H, Wang H, Sun F, Lyu S, An Y. High-flow nasal cannula oxygen therapy is superior to conventional oxygen therapy but not to noninvasive mechanical ventilation on intubation rate: a systematic review and meta-analysis. Crit Care. 2017; 21(1):184.
[71] Chidekel A, Zhu Y, Wang J, Mosko JJ, Rodriguez E, Shaffer TH. The effects of gas humidification with high-flow nasal cannula on cultured human airway epithelial cells. Pulm Med. 2012; 2012.
[72] Mündel T, Feng S, Tatkov S, Schneider H. Mechanisms of nasal high flow on ventilation during wakefulness and sleep. J. Appl. Physiol. 2013;114(8):1058-65.
[73] Perales JMC, Llorens P, Brouzet B, Jiménez ARA, Fernández-Cañadas JM, Dalmau JC, et al. High-flow therapy via nasal cannula in acute heart failure. Rev Esp Cardiol (English Edition). 2011; 64(8):723-5.
[74] Hyun Cho W, Ju Yeo H, Hoon Yoon S, Lee S, SooJeon D, Seong Kim Y, et al. High-flow nasal cannula therapy for acute hypoxemic respiratory failure in adults: a retrospective analysis. Intern Med. 2015; 54(18):2307-13.
[75] Haywood ST, Whittle JS, Volakis LI, Dungan II G, Bublewicz M, Kearney J, et al. HVNI vs NIPPV in the treatment of acute decompensated heart failure: Subgroup analysis of a multi-center trial in the ED. Am J Emerg Med. 2019.
[76] Cowie MR, Woehrle H, Wegscheider K, Angermann C, d’Ortho M-P, Erdmann E, et al. Adaptive servo-ventilation for central sleep apnea in systolic heart failure. N Engl J Med. 2015;373(12):1095-105.
[77] D’Elia E, Vanoli E, La Rovere MT, Fanfulla F, Maggioni A, Casali V, et al. Adaptive servo ventilation reduces central sleep apnea in chronic heart failure patients: beneficial effects on autonomic modulation of heart rate. J Cardiovasc Med. 2013; 14(4):296-300.
[78] Momomura S, Seino Y, Kihara Y, Adachi H, Yasumura Y, Yokoyama H, et al. Adaptive servo-ventilation therapy for patients with chronic heart failure in a confirmatory, multicenter, randomized, controlled study. Circ J. 2015; 79(5):981-90.
[79] Imamura T, Kinugawa K, Nitta D, Komuro I. Long-term adaptive servo-ventilator treatment prevents cardiac death and improves clinical outcome. Int Heart J. 2016; 57(1):47-52.
[80] Seino Y, Momomura S-i, Kihara Y, Adachi H, Yasumura Y, Yokoyama H. Effects of adaptive servo-ventilation therapy on cardiac function and remodeling in patients with chronic heart failure (SAVIOR-C): study protocol for a randomized controlled trial. Trials. 2015;16(1):14.
[81] Asakawa N, Sakakibara M, Noguchi K, Kamiya K, Yamada S, Yoshitani T, et al. Adaptive Servo-Ventilation Has More Favorable Acute Effects on Hemodynamics Than Continuous Positive Airway Pressure in Patients With Heart Failure. Int Heart J. 2015; 56(5):527-32.
[82] Sakakibara M, Yamada S, Matsushima S, Saito A, Masaki Y, Honma T, et al. Successful adaptive servo-ventilation for patients with acute cardiogenic pulmonary edema due to severe aortic stenosis. J Cardiol Cases. 2010;2(2):e115-e8.
[83] Nakano S, Kasai T, Tanno J, Sugi K, Sekine Y, Muramatsu T, et al. The effect of adaptive servo-ventilation on dyspnoea, haemodynamic parameters and plasma catecholamine concentrations in acute cardiogenic pulmonary oedema. Eur Heart J Acute Cardiovasc Care. 2015; 4(4):305-15.
[84] Kinoshita M1, Okayama H2, Kawamura G1, Shigematsu T1, Takahashi T1, Kawata Y, et al. Beneficial effects of rapid introduction of adaptive servo-ventilation in the emergency room in patients with acute cardiogenic pulmonary edema. J Cardiol. 2017; 69(1):308-313.
[85] Kinoshita M, Okayama H, Kawamura G, Shigematsu T, Takahashi T, Kawata Y, et al. Beneficial effects of rapid introduction of adaptive servo-ventilation in the emergency room in patients with acute cardiogenic pulmonary edema. J Cardiol. 2017;69(1):308-13.
[86] Pettenuzzo T, Fan E. 2016 year in review: mechanical ventilation. Respir Care. 2017; 62(5):629-635.
[87] Kataoka J, Kuriyama A, Norisue Y, Fujitani S. Proportional modes versus pressure support ventilation: a systematic review and meta-analysis. Ann Intensive Care. 2018;8(1):123.
[88] Rusterholtz T, Bollaert P-E, Feissel M, Romano-Girard F, Harlay M-L, Zaehringer M, et al. Continuous positive airway pressure vs. proportional assist ventilation for noninvasive ventilation in acute cardiogenic pulmonary edema. Intensive Care Med. 2008;34(5):840-6.
[89] Bertrand P-M, Futier E, Coisel Y, Matecki S, Jaber S, Constantin J-M. Neurally adjusted ventilatory assist vs pressure support ventilation for noninvasive ventilation during acute respiratory failure: a crossover physiologic study. Chest. 2013; 143(1):30-6.
[90] Piquilloud L, Tassaux D, Bialais E, Lambermont B, Sottiaux T, Roeseler J, et al. Neurally adjusted ventilatory assist (NAVA) improves patient–ventilator interaction during non-invasive ventilation delivered by face mask. Intensive Care Med. 2012;38(10):1624-31.
[91] Hadda V, Shah TH, Madan K, Mohan A, Khilnani GC, Guleria R. Noninvasive ventilation–neurally adjusted ventilator assist for management of acute exacerbation of chronic obstructive pulmonary disease. Lung India. 2018; 35(1):62-5.
[92] Cammarota G, Olivieri C, Costa R, Vaschetto R, Colombo D, Turucz E, et al. Noninvasive ventilation through a helmet in postextubation hypoxemic patients: physiologic comparison between neurally adjusted ventilatory assist and pressure support ventilation. Intensive Care Med. 2011; 37(12):1943-50.
[93] Demoule A, Clavel M, Rolland-Debord C, Perbet S, Terzi N, Kouatchet A, et al. Neurally adjusted ventilatory assist as an alternative to pressure support ventilation in adults: a French multicentre randomized trial. Intensive Care Med. 2016;42(11):1723-32.
[94] Magne J, Pibarot P, Sengupta PP, Donal E, Rosenhek R, Lancellotti P. Pulmonary hypertension in valvular disease: a comprehensive review on pathophysiology to therapy from the HAVEC Group. JACC Cardiovasc Imaging. 2015; 8(1):83-99.
[95] Demirkol S, Kucuk U, Baysan O, Balta S, Celik T, Kurt IH, et al. The impact of mitral stenosis on left atrial function assessed by two‐dimensional speckle tracking echocardiography. Echocardiography. 2012; 29(9):1064-70.
[96] Tkacova R, Liu PP, Naughton MT, Bradley TD. Effect of continuous positive airway pressure on mitral regurgitant fraction and atrial natriuretic peptide in patients with heart failure. J Am Coll Cardiol. 1997; 30(3):739-45.
[97] Wright SE, Heffner JE. Positive pressure mechanical ventilation augments left ventricular function in acute mitral regurgitation. Chest. 1992; 102(5):1625-7.
[98] Steiner S, Schannwell CM, Strauer BE. Left ventricular response to continuous positive airway pressure: role of left ventricular geometry. Respiration. 2008; 76(4):393-7.
[99] Kato T, Kasai T, Yatsu S, Murata A, Matsumoto H, Suda S, et al. Acute effects of positive airway pressure on functional mitral regurgitation in patients with systolic heart failure. Front Physiol. 2017; 8:921.
[100] Mehra P, Mehta V, Sukhija R, Sinha AK, Gupta M, Girish M, et al. Pulmonary hypertension in left heart disease. Archives of medical science: AMS. 2019; 15(1):262.
[101] He Z, Schoebel C, Penzel T, Fietze I, Ye Z. Sleep-disordered breathing and severe aortic stenosis. Somnologie. 2017;21(4):265-72.
[102] Maheshwari V, Barr B, Srivastava M. Acute valvular heart disease. Cardiol Clin. 2018; 36(1):115-27.
[103] Flint N, Wunderlich NC, Shmueli H, Ben-Zekry S, Siegel RJ, Beigel R. Aortic Regurgitation. Curr Cardiol Rep. 2019; 21(7):65.
[104] Bittencourt HS, Reis HFCd, Lima MS, Gomes Neto M. Non-invasive ventilation in patients with heart failure: a systematic review and meta-analysis. Arq Bras Cardiol. 2017; 108(2):161-8.
[105] Lien W-C, Wang C-H, Chang W-T, Hsu R-B, Chen W-J. Aortic dissection presenting with acute pulmonary edema. Am J Emerg Med. 2018;36(7):1323. e7-. e9.
[106] İsilak Z, Kucuk U, Aparci M, Yalcin M, Dogan M, Uzun M. PP-064 Acute Type a Aortic Dissection Complicated By Severe Aortic Regurgitation and Pulmonary Edema. American Journal of Cardiology. 2016;117: S64-S5.
[107] Yamamoto T, Takeda S, Sato N, Akutsu K, Mase H, Nakazato K, et al. Noninvasive ventilation in pulmonary edema complicating acute myocardial infarction. Circ J. 2012: CJ-12-0517.
[108] Pesaro AEP, Katz M, Katz JN, Barbas CSV, Makdisse MR, Correa AG, et al. Mechanical ventilation and clinical outcomes in patients with acute myocardial infarction: a retrospective observational study. PloS one. 2016; 11(3): e0151302.
[109] Bellone A, Monari A, Cortellaro F, Vettorello M, Arlati S, Coen D. Myocardial infarction rate in acute pulmonary edema: noninvasive pressure support ventilation versus continuous positive airway pressure. Crit Care Med. 2004; 32(9):1860-5.
[110] Carrillo-Aleman L, Lopez Martinez A, Martinez-Perez V, Bayoumi Delis P, Ruiz-Nodar J, Martinez J, et al. P4665 Noninvasive ventilation in treatment of acute pulmonary oedema due to acute coronary syndrome; propensity score matched analysis. Eur Heart J. 2018; 39(suppl_1): ehy563. P4665.
[111] Maroto E, Fouron J-C, Teyssier G, Bard H, van Doesburg NH, Cartwright D. Effect of intermittent positive pressure ventilation on diastolic ventricular filling patterns in premature infants. J Am Coll Cardiol. 1990; 16(1):171-4.
[112] Juhl-Olsen P, Hermansen JF, Frederiksen CA, Rasmussen LA, Jakobsen C-J, Sloth E. Positive End-expiratory Pressure Influences Echocardiographic Measures of Diastolic FunctionA Randomized, Crossover Study in Cardiac Surgery Patients. Anesthesiology. Anesthesiology. 2013; 119(5):1078-86.
[113] Chin J, Lee E, Kim W, Choi D, Hahm K, Sim J, et al. Positive end-expiratory pressure aggravates left ventricular diastolic relaxation further in patients with pre-existing relaxation abnormality. Br J Anaesth.. 2013; 111(3):368-73.
[114] Juhl-Olsen P, Frederiksen CA, Hermansen JF, Jakobsen C-J, Sloth E. Echocardiographic measures of diastolic function are preload dependent during triggered positive pressure ventilation: a controlled crossover study in healthy subjects. Crit Care Res Pract. 2012; 2012: 703196.
[115] de Meirelles Almeida C, Nedel W, Morais V, Boniatti M, de Almeida-Filho O. Diastolic dysfunction as a predictor of weaning failure: a systematic review and meta-analysis. Crit Care Med. 2016; 34:135-41.
[116] Bellone A. The Role of Continuous Positive Airway Pressure in Acute Cardiogenic Pulmonary Edema with Preserved Left Ventricular Systolic Function: A Preliminary Study. Noninvasive Mechanical Ventilation: Springer; 2010. p. 237-40.
[117] Bellone A, Etteri M, Vettorello M, Berruti V, Maino C, Mariani M, et al. The effects of continuous positive airway pressure on plasma brain natriuretic peptide concentrations in patients presenting with acute cardiogenic pulmonary edema with preserved left ventricular systolic function. Am J Emerg Med. 2010; 28(2):230-4.
[118] Hongisto M, Lassus J, Tarvasmaki T, Sionis A, Tolppanen H, Lindholm MG, et al. Use of noninvasive and invasive mechanical ventilation in cardiogenic shock: A prospective multicenter study. Int J Cardiol. 2017; 230:191-7.
[119] Vallabhajosyula S, Kashani K, Dunlay SM, Vallabhajosyula S, Vallabhajosyula S, Sundaragiri PR, et al. Acute respiratory failure and mechanical ventilation in cardiogenic shock complicating acute myocardial infarction in the USA, 2000–2014. Ann Intensive Care. 2019; 9(1):96.
[120] Price LC, Wort SJ, Finney SJ, Marino PS, Brett SJ. Pulmonary vascular and right ventricular dysfunction in adult critical care: current and emerging options for management: a systematic literature review. Crit Care. 2010; 14(5):R169.
[121] Confalonieri M, Gazzaniga P, Gandola L, Aiolfi S, Della Porta R, Frisinghelli A, et al. Haemodynamic response during initiation of non-invasive positive pressure ventilation in COPD patients with acute ventilatory failure. Respir med. 1998; 92(2):331-7.
[122] Parola D, Romani S, Petroianni A, Locorriere L, Terzano C. Treatment of acute exacerbations with non-invasive ventilation in chronic hypercapnic COPD patients with pulmonary hypertension. Eur Rev Med Pharmacol Sci. 2012;16(2):183-91.
[123] Corral J, Mogollon MV, Sánchez-Quiroga M-Á, de Terreros JG, Romero A, Caballero C, et al. Echocardiographic changes with non-invasive ventilation and CPAP in obesity hypoventilation syndrome. Thorax. 2018;73(4):361-8.
[124] Disselkamp M, Adkins D, Pandey S, Coz Yataco AO. Physiologic Approach to Mechanical Ventilation in Right Ventricular Failure. Ann Am Thorac Soc. 2018;15(3):383-9.
[125] Girou E, Brun-Buisson C, Taillé S, Lemaire F, Brochard L. Secular trends in nosocomial infections and mortality associated with noninvasive ventilation in patients with exacerbation of COPD and pulmonary edema. Jama. 2003; 290(22):2985-91.
[126] Hill NS. Where should noninvasive ventilation be delivered? Respir Care. 2009;54(1):62-70.
[127] Scala R, Pisani L. Noninvasive ventilation in acute respiratory failure: which recipe for success? Eur Respir Rev. 2018;27(149):180029.
[128] Vaudan S, Ratano D, Beuret P, Hauptmann J, Contal O, Garin N. Impact of a dedicated noninvasive ventilation team on intubation and mortality rates in severe COPD exacerbations. Respir care. 2015;60(10):1404-8.
[129] D’Orazio A, Dragonetti A, Campagnola G, Garza C, Bert F, Frigerio S. Patient Compliance to Non-Invasive Ventilation in Sub-IntensiveCare Unit: An Observational Study. Nursing Crit Care. 2018, 11(1): 1-4.
[130] Dres M, Demoule A. Noninvasive Ventilation: Do Not Tolerate Intolerance. Respiratory Care. 2016; 61(3): 393-394.
[131] Passarini JNdS, Zambon L, Morcillo AM, Kosour C, Saad IAB. Use of non-invasive ventilation in acute pulmonary edema and chronic obstructive pulmonary disease exacerbation in emergency medicine: predictors of failure. Rev Bras Ter Intensiva. 2012; 24(3):278-83.
[132] Duan J, Han X, Bai L, Zhou L, Huang S. Assessment of heart rate, acidosis, consciousness, oxygenation, and respiratory rate to predict noninvasive ventilation failure in hypoxemic patients. Intensive Care Med. 2017;43(2):192-9.
[133] Antonelli M, Conti G, Moro M, Esquinas A, Gonzalez-Diaz G, Confalonieri M, et al. Predictors of failure of noninvasive positive pressure ventilation in patients with acute hypoxemic respiratory failure: a multi-center study. Intensive Care Med. 2001;27(11):1718-28.
[134] Masip J, Páez J, Merino M, Parejo S, Vecilla F, Riera C, et al. Risk factors for intubation as a guide for noninvasive ventilation in patients with severe acute cardiogenic pulmonary edema. Intensive Care Med. 2003;29(11):1921-8.
[135] Shirakabe A, Hata N, Yokoyama S, Shinada T, Kobayashi N, Tomita K, et al. Predicting the success of noninvasive positive pressure ventilation in emergency room for patients with acute heart failure. J Cardiol. 2011; 57 (1):107-14.
[136] Luo Z, Han F, Li Y, He H, Yang G, Mi Y, et al. Risk factors for noninvasive ventilation failure in patients with acute cardiogenic pulmonary edema: A prospective, observational cohort study. Crit Care Med. 2017; 39:238-47.
[137] Bateman R, Sharpe M, Jagger J, Ellis C, Solé-Violán J, López-Rodríguez M, et al. 36th International Symposium on Intensive Care and Emergency Medicine. Crit Care. 2016; 20(2):13.
[138] Ferrer M, Valencia M, Nicolas JM, Bernadich O, Badia JR, Torres A. Early noninvasive ventilation averts extubation failure in patients at risk: a randomized trial. Am J Respir Crit Care Med. 2006;173(2):164-70.
[139] Brill A-K, Pickersgill R, Moghal M, Morrell MJ, Simonds AK. Mask pressure effects on the nasal bridge during short-term noninvasive ventilation. ERJ Open Res. 2018; 4(2):00168-2017.
[140] Longrois D, Conti G, Mantz J, Faltlhauser A, Aantaa R, Tonner P. Sedation in non-invasive ventilation: do we know what to do (and why)? Multidiscip Respir Med. 2014; 9(1):56.
[141] Masding A, Keating O, Pereira C, Kaul S. P210 Use of dexmedetomidine with non-invasive ventilation (NIV) in a cardiothoracic intensive care unit (CT ICU). Thorax; 2018; 73(Suppl_4):A215.
[142] Bielka K, Kuchyn I. Dexmedetomidine for sedation during nonivasive ventilation in acute respiratory syndrome patients. Eur Respir Soc; 2018.
[143] Harjola VP, Mebazaa A, Čelutkienė J, Bettex D, Bueno H, Chioncel O, et al. Contemporary management of acute right ventricular failure: a statement from the Heart Failure Association and the Working Group on Pulmonary Circulation and Right Ventricular Function of the European Society of Cardiology. Eur J Heart Fail. 2016;18(3):226-41.
[144] Agarwal R, Srinivas R. Noninvasive ventilation in acute heart failure. Am J Med. 2007; 120(10):e19.
[145] Simpson G, Ross M, McKeown D, Ray D. Tracheal intubation in the critically ill: a multi-centre national study of practice and complications. Br J Anaesth. 2012;108(5):792-9.
[146] Mota LAA, de Cavalho GB, Brito VA. Laryngeal complications by orotracheal intubation: literature review. Int Arch Otorhinolaryngol. 2012;16(02):236-45.
[147] Wiesen J, Ornstein M, Tonelli AR, Menon V, Ashton RW. State of the evidence: mechanical ventilation with PEEP in patients with cardiogenic shock. Heart. 2013; 99(24):1812-7.
[148] Lessard MR, Guérot E, Lorino H, Lemaire F, Brochard L. Effects of pressure-controlled with different I: E ratios versus volume-controlled ventilation on respiratory mechanics, gas exchange, and hemodynamics in patients with adult respiratory distress syndrome. Anesthesiology. 1994;80(5):983-91.
[149] Chan K, Abraham E. Effects of inverse ratio ventilation on cardiorespiratory parameters in severe respiratory failure. Chest. 1992;102(5):1556-61.
[150] Dries D, Kumar P, Mathru M, Mayer R, Zecca A, Rao T, et al. Hemodynamic effects of pressure support ventilation in cardiac surgery patients. The American surgeon. 1991;57(2):122-5.
[151] Poelaert JI, Visser CA, Everaert JA, Koolen JJ, Colardyn FA. Acute hemodynamic changes of pressure-controlled inverse ratio ventilation in the adult respiratory distress syndrome: a transesophageal echocardiographic and Doppler study. Chest. 1993;104(1):214-9.
[152] Mancebo J, Vallverdu I, Bak E, Dominguez G, Subirana M, Benito S, et al. Volume-controlled ventilation and pressure-controlled inverse ratio ventilation: a comparison of their effects in ARDS patients. Monaldi Arch Chest Dis. 1994; 49(3):201-7.
[153] Türköz A, Balcı ŞT, Gönen H, Çınar Ö, Özker E, Türköz R. The effects of different ventilator modes on cerebral tissue oxygen saturation in patients with bidirectional superior cavopulmonary connection. Ann Card Anaesth. 2014;17(1):10-5.
[154] Wolthuis EK, Choi G, Dessing MC, Bresser P, Lutter R, Dzoljic M, et al. Mechanical ventilation with lower tidal volumes and positive end-expiratory pressure prevents pulmonary inflammation in patients without preexisting lung injury. Anesthesiology: Anesthesiology. 2008;108(1):46-54.
[155] Choi G, Wolthuis EK, Bresser P, Levi M, Van Der Poll T, Dzoljic M, et al. Mechanical ventilation with lower tidal volumes and positive end-expiratory pressure prevents alveolar coagulation in patients without lung injury. Anesthesiology. 2006;105(4):689-95.
[156] Park S-H. Perioperative lung-protective ventilation strategy reduces postoperative pulmonary complications in patients undergoing thoracic and major abdominal surgery. Korean J Anesthesiol. 2016; 69 (1): 3-7.
[157] Determann RM, Royakkers A, Wolthuis EK, Vlaar AP, Choi G, Paulus F, et al. Ventilation with lower tidal volumes as compared with conventional tidal volumes for patients without acute lung injury: a preventive randomized controlled trial. Crit care. 2010;14(1):R1.
[158] Simonis FD, Neto AS, Binnekade JM, Braber A, Bruin KC, Determann RM, et al. Effect of a low vs intermediate tidal volume strategy on ventilator-free days in intensive care unit patients without ARDS: a randomized clinical trial. Jama. 2018;320(18):1872-80.
[159] Cherpanath TG, Smeding L, Hirsch A, Lagrand WK, Schultz MJ, Groeneveld AJ. Low tidal volume ventilation ameliorates left ventricular dysfunction in mechanically ventilated rats following LPS-induced lung injury. BMC anesthesiol. 2015;15(1):140.
Files | ||
Issue | Vol 6 No 2 (2020): Spring | |
Section | Review Article(s) | |
DOI | https://doi.org/10.18502/aacc.v6i2.2766 | |
Keywords | ||
Acute Cardiogenic pulmonary edema Critical care Ventilation Respiratory management |
Rights and permissions | |
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. |