Review Article

Methods for Qualitative and Quantitative Assessment of Extravascular Lung Water–Clinical Application, Advantages, and Disadvantages

Abstract

Background: Lung edema is a life-threatening condition associated with prolonged intensive care unit stay and high mortality. The increased extravascular lung water (EVLW) causes impaired lung compliance and refractory hypoxemia. Although there are promising methods for the detection of EVLW, there is not yet a universally accepted one, and a systematic approach to the problem is missing. The discussion in this article is on the potential of the described assessment methods and techniques and reveals the strong and weak points according to their practical application.
Methods: The discussion in this article is on the potential of the described assessment methods and techniques. According to our comparative analysis, the strong and weak points regarding their practical application are presented in a table.
Results: This review article summerizes advantages and disadvantages of the most common methods in clinical practice.
Conclusion: Although there are promising methods for the detection of EVLW, there is not yet a universally accepted one, and a systematic approach to the problem is yet to be found.

[1] Laggner A, Kleinberger G, Haller J, Lenz K, Sommer G, Druml W. Bedside estimation of extravascular lung water in critically ill patients: comparison of the chest radiograph and the thermal dye technique. Intensive Care Med. 1984;10:309-13.
[2] Lewis FR, Elings VB, Sturm JA. Bedside measurement of lung water. J Surg Res. 1979;27(4):250-61.
[3] Kushimoto S, Taira Y, Kitazawa Y, Okuchi K, Sakamoto T, Ishikura H, et al. PiCCO Pulmonary Edema Study Group. The clinical usefulness of extravascular lung water and pulmonary vascular permeability index to diagnose and characterize pulmonary edema: a prospective multicenter study on the quantitative differential diagnostic definition for acute lung injury/acute respiratory distress syndrome. Crit Care. 2012;16(6):R232.
[4] Lange NR, Schuster DP. The measurement of lung water. Crit Care. 1999;3. Available from: http://ccforum.com
[5] Sakr Y, Vincent JL, Reinhart K, Groeneveld J, Michalopoulos A, Sprung CL, et al. High tidal volume and positive fluid balance are associated with worse outcome in acute lung injury. Chest. 2005;128(5):3098-108.
[6] Staub NC. Clinical use of lung water measurements. Report of a workshop. Chest. 1986;90(4):588-94.
[7] Michard F, Fernandez-Mondejar E, Kirov MY, Malbrain M, Tagami T. A new and simple definition for acute lung injury. Crit Care Med. 2012;40(4):1004-6.
[8] Fernández-Mondéjar E, Castaño-Pérez J, Rivera-Fernández R, Colmenero-Ruiz M, Manzano F, Pérez-Villares JM, et al. Quantification of lung water by transpulmonary thermodilution in normal and edematous lung. J Crit Care. 2003;18(4):253-8.
[9] Meade MO, Cook RJ, Guyatt GH, Groll R, Kachura JR, Bedard M, et al. Interobserver variation in interpreting chest radiographs for the diagnosis of acute respiratory distress syndrome. Am J Respir Crit Care Med. 2000;161(1):85-90.
[10] Rubenfeld GD, Caldwell E, Granton J, Hudson LD, Matthay MA. Interobserver variability in applying a radiographic definition for ARDS. Chest. 1999;116(5):1347-53.
[11] Halperin BD, Feeley TW, Mihm FG, Chiles C, Guthaner DF, Blank NE. Evaluation of the portable chest roentgenogram for quantitating extravascular lung water in critically ill adults. Chest. 1985;88(5):649-52.
[12] Forster BB, Muller NL, Mayo JR, Okazawa M, Wiggs BJR, Pare PD. High-resolution computed tomography of experimental hydrostatic pulmonary edema. Chest. 1992;101(5):1434-7.
[13] Effros RM, Pornsuriyasak P, Porszasz J, Casaburi R. Indicator dilution measurements of extravascular lung water: basic assumptions and observations. Am J Physiol Lung Cell Mol Physiol. 2008;294:L1023-31.
[14] Wollmer P, Rhodes CG. Positron emission tomography in pulmonary edema. J Thorac Imaging. 1988;3(3):44-50.
[15] Minev I, Jukic V, Gogova T, Tarykova N. Personalized approach in defining the level of interest during lung electrical impedance tomography. Bulg Chem Commun. 2023;55(Special Issue C):75-9.
[16] Minev I. Unconventional application of electrical impedance tomography in patients with significant thoracic deformities due to trauma. Intensive Care Med Exp. 2024;12(S1):642-3.
[17] Soldati G, Demi M, Demi L. Ultrasound patterns of pulmonary edema. Ann Transl Med. 2019;7(S1):S16.
[18] Wooten WM, Shaffer LET, Hamilton LA. Bedside ultrasound versus chest radiography for detection of pulmonary edema: a prospective cohort study. J Ultrasound Med. 2019;38(4):967-73.
[19] Phillips CR, Chesnutt MS, Smith SM. Extravascular lung water in sepsis-associated acute respiratory distress syndrome: indexing with predicted body weight improves correlation with severity of illness and survival. Crit Care Med. 2008;36(1):69-73.
[20] Lichtenstein DA. Lung ultrasound in the critically ill. Ann Intensive Care. 2014;4:1. Available from: http://www.annalsofintensivecare.com/content/4/1/1
[21] Muradali D. Can ultrasound probes and coupling gel be a source of nosocomial infection in patients undergoing sonography? An in vivo and in vitro study. AJR Am J Roentgenol. 1995;164(6):1521-4.
[22] Boussat S, Jacques T, Levy B, Laurent E, Gache A, Capellier G, et al. Intravascular volume monitoring and extravascular lung water in septic patients with pulmonary edema. Intensive Care Med. 2002;28(6):712-8.
[23] Sakka SG, Rühl CC, Pfeiffer UJ, Beale R, McLuckie A, Reinhart K, et al. Assessment of cardiac preload and extravascular lung water by single transpulmonary thermodilution. Intensive Care Med. 2000;26(2):180-7.
[24] Sakka SG, Klein M, Reinhart K, Meier-Hellmann A. Prognostic value of extravascular lung water in critically ill patients. Chest. 2002;122(6):2080-6.
[25] Schreiber T, Hüter L, Schwarzkopf K, Schubert H, Preussler N, Bloos F, et al. Lung perfusion affects preload assessment and lung water calculation with the transpulmonary double indicator method. Intensive Care Med. 2001;27(11):1814-8.
[26] Gupta RK, Nathani N, Mishra P. Methods of measuring lung water. Intensive Care Soc. 2012;13(3).
[27] Snashall PD, Keyes SJ, Morgan BM, McAnulty RJ, Mitchell-Heggs MA, McLvor JM, et al. The radiographic detection of acute pulmonary oedema: a comparison of radiographic appearances, densitometry and lung water in dogs. Br J Radiol. 1981;54(640):277-88.
[28] Saugel B, Ringmaier S, Holzapfel K, Schuster T, Phillip V, Schmid RM, et al. Physical examination, central venous pressure, and chest radiography for the prediction of transpulmonary thermodilution-derived hemodynamic parameters in critically ill patients: a prospective trial. J Crit Care. 2011;26(4):402-10.
[29] Leiser P, Kirschning T, Weiß C, Hagmann M, Schoettler J, Centner FS, et al. A quantitative CT parameter for the assessment of pulmonary oedema in patients with acute respiratory distress syndrome. PLoS One. 2020;15(11):e0241048.
[30] Hopkins SR, Levin DL, Emami K, Kadlecek S, Yu J, Ishii M, et al. Advances in magnetic resonance imaging of lung physiology. J Appl Physiol. 2007;102(3):1244-54.
[31] Caruthers SD, Paschal CB, Pou NA, Roselli RJ, Harris TR. Regional measurements of pulmonary edema by using magnetic resonance imaging. J Appl Physiol. 1998;84(6):2143-53.
[32] Phillips DM, Man SF, Froese AB. Assessment of temporal changes in pulmonary edema with NMR imaging. J Appl Physiol. 1989;66(3):1197-208.
[33] Wexler HR, Nicholson RL. Quantitation of lung water by nuclear magnetic resonance imaging. Invest Radiol. 1985;20(7):583-90.
[34] Cutillo AG, Morris AH. Determination of lung water content and distribution by nuclear magnetic resonance imaging. J Thorac Imaging. 1986;1(3):39-51.
[35] Morris AH, Blatter DD, Case TA, Cutillo AG, Ailion DC, Durney CH, et al. A new nuclear magnetic resonance property of lung. J Appl Physiol. 1985;58(3):759-62.
[36] Cutillo AG, Goodrich KC, Ganesan K, Watanabe S, Ailion DC, Albertine KH, et al. Lung water measurement by nuclear magnetic resonance: correlation with morphometry. J Appl Physiol. 1995;79(6):2163-8.
[37] Lichtenstein D, Goldstein I, Mourgeon E, Cluzel P, Grenier P, Rouby JJ. Comparative diagnostic performances of auscultation, chest radiography, and lung ultrasonography in acute respiratory distress syndrome. Anesthesiology. 2004;100(1):9-15.
[38] Lichtenstein D. Feasibility and safety of ultrasound-aided thoracentesis in mechanically ventilated patients. Intensive Care Med. 1999;25(9):955-8.
[39] Yang PC, Luh KT, Chang DB, Yu CJ, Kuo SH, Wu HD. Ultrasonographic evaluation of pulmonary consolidation. Am Rev Respir Dis. 1992;146(3):757-62.
[40] Lichtenstein DA, Menu Y. A bedside ultrasound sign ruling out pneumothorax in the critically ill: lung sliding. Chest. 1995;108(5):1345-8.
[41] Lichtenstein D, Mezière G, Biderman P, Gepner A. The "lung point": an ultrasound sign specific to pneumothorax. Intensive Care Med. 2000;26(10):1434-40.
[42] Volpicelli G, Elbarbary M, Blaivas M, Lichtenstein DA, Mathis G, Kirkpatrick AW, et al. International evidence-based recommendations for point-of-care lung ultrasound. Intensive Care Med. 2012;38(4):577-91.
[43] Schuster DP. Positron emission tomography: theory and its application to the study of lung disease. Am Rev Respir Dis. 1989;139(3):818-40.
[44] Velazquez M, Haller J, Amundsen T, Schuster DP. Regional lung water measurements with PET: accuracy, reproducibility, and linearity. J Nucl Med. 1991;32(4):719-25.
[45] Schuster DP, Marklin GF, Mintun MA. Regional changes in extravascular lung water detected by positron emission tomography. J Appl Physiol. 1986;60(4):1170-8.
[46] Bodenstein M, David M, Markstaller K. Principles of electrical impedance tomography and its clinical application. Crit Care Med. 2009;37(2):713-24.
[47] Pomerantz M, Baumgartner R, Lauridson J, Eiseman B. Clinical evaluation of transthoracic electrical impedance as a guide to intrathoracic fluid volumes. Ann Surg. 1970;171(5):686-94.
[48] Kunst PW, Vonk Noordegraaf A, Raaijmakers E, Bakker J, Groeneveld AB, Postmus PE, et al. Electrical impedance tomography in the assessment of extravascular lung water in noncardiogenic acute respiratory failure. Chest. 1999;116(6):1695-702.
[49] Trepte CJ, Phillips CR, Solà J, Adler A, Haas SA, Rapin M, et al. Electrical impedance tomography (EIT) for quantification of pulmonary edema in acute lung injury. Crit Care. 2016;20(1):6.
[50] Brown LM, Liu KD, Matthay MA. Measurement of extravascular lung water using the single indicator method in patients: research and potential clinical value. Am J Physiol Lung Cell Mol Physiol. 2009;297(4):L547-58.
[51] Eisenberg PR, Hansbrough JR, Anderson D, Schuster DP. A prospective study of lung water measurements during patient management in an intensive care unit. Am Rev Respir Dis. 1987;136(3):662-8.
[52] Mitchell JP, Schuller D, Calandrino FS, Schuster DP. Improved outcome based on fluid management in critically ill patients requiring pulmonary artery catheterization. Am Rev Respir Dis. 1992;145(5):990-8.
[53] Litton E, Morgan M. The PiCCO monitor: a review. Anaesth Intensive Care. 2012;40(3):393-409.
[54] Katzenelson R, Perel A, Berkenstadt H, Preisman S, Kogan S, Sternik L, et al. Accuracy of transpulmonary thermodilution versus gravimetric measurement of extravascular lung water. Crit Care Med. 2004;32(7):1550-4.
[55] Kirov MY, Kuzkov VV, Kuklin VN, Waerhaug K, Bjertnaes LJ. Extravascular lung water assessed by transpulmonary single thermodilution and postmortem gravimetry in sheep. Crit Care. 2004;8(6):R451-8.
[56] Tagami T, Kushimoto S, Yamamoto Y, Atsumi T, Tosa R, Matsuda K, et al. Validation of extravascular lung water measurement by single transpulmonary thermodilution: human autopsy study. Crit Care. 2010;14(5):R162.
[57] Dres M, Teboul JL, Guerin L, Anguel N, Amilien V, Clair MP, et al. Transpulmonary thermodilution enables to detect small short-term changes in extravascular lung water induced by a bronchoalveolar lavage. Crit Care Med. 2014;42(8):1869-73.
[58] Tagami T, Sawabe M, Kushimoto S, Marik PE, Mieno MN, Kawaguchi T, et al. Quantitative diagnosis of diffuse alveolar damage using extravascular lung water. Crit Care Med. 2013;41(9):2144-50.
[59] Martin GS, Eaton S, Mealer M, Moss M. Extravascular lung water in patients with severe sepsis: a prospective cohort study. Crit Care. 2005;9(2):R74-82.
[60] Letourneau JL, Pinney J, Phillips CR. Extravascular lung water predicts progression to acute lung injury in patients with increased risk. Crit Care Med. 2012;40(3):847-54.
[61] Craig TR, Duffy MJ, Shyamsundar M, McDowell C, O’Kane CM, Elborn JS, et al. A randomized clinical trial of hydroxymethylglutaryl-coenzyme a reductase inhibition for acute lung injury (the HARP study). Am J Respir Crit Care Med. 2011;183(5):620-6.
[62] Kirov MY, Kuzkov VV, Bjertnaes LJ. Extravascular lung water as a target for intensive care. ICU Manag Pract. 2019;19(1):46-50.
[63] Wang H, Cui N, Su L, Long Y, Wang X, Zhou X, et al. Prognostic value of extravascular lung water and its potential role in guiding fluid therapy in septic shock after initial resuscitation. J Crit Care. 2016;33:106-13.
[64] Cordemans C, De Laet I, Van Regenmortel N, Schoonheydt K, Dits H, Huber W, et al. Fluid management in critically ill patients: the role of extravascular lung water, abdominal hypertension, capillary leak, and fluid balance. Ann Intensive Care. 2012;2(Suppl 1):S1.
[65] Belda FJ, Aguilar G, Teboul JL, Pestaña D, Redondo FJ, Malbrain M, et al. Complications related to less-invasive haemodynamic monitoring. Br J Anaesth. 2011;106(4):482-6.
[66] Tagami T, Nakamura T, Kushimoto S, Tosa R, Watanabe A, Kaneko T, et al. Early-phase changes of extravascular lung water index as a prognostic indicator in acute respiratory distress syndrome patients. Ann Intensive Care. 2014;4(1):27.
Files
IssueArticle in Press QRcode
SectionReview Article(s)
Keywords
Acute respiritory distress syndrome Extravascular lung water Imaging methods Thermodilutional technique

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
1.
Petkova - Ivanova G, Karavelikova I, Karamitev S. Methods for Qualitative and Quantitative Assessment of Extravascular Lung Water–Clinical Application, Advantages, and Disadvantages. Arch Anesth & Crit Care. 2025;.